Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iinllyconn | |- II e. N-Locally Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sconnpconn | |- ( x e. SConn -> x e. PConn ) |
|
2 | pconnconn | |- ( x e. PConn -> x e. Conn ) |
|
3 | 1 2 | syl | |- ( x e. SConn -> x e. Conn ) |
4 | 3 | ssriv | |- SConn C_ Conn |
5 | nllyss | |- ( SConn C_ Conn -> N-Locally SConn C_ N-Locally Conn ) |
|
6 | 4 5 | ax-mp | |- N-Locally SConn C_ N-Locally Conn |
7 | llyssnlly | |- Locally SConn C_ N-Locally SConn |
|
8 | iillysconn | |- II e. Locally SConn |
|
9 | 7 8 | sselii | |- II e. N-Locally SConn |
10 | 6 9 | sselii | |- II e. N-Locally Conn |