Metamath Proof Explorer


Theorem iinllyconn

Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Assertion iinllyconn
|- II e. N-Locally Conn

Proof

Step Hyp Ref Expression
1 sconnpconn
 |-  ( x e. SConn -> x e. PConn )
2 pconnconn
 |-  ( x e. PConn -> x e. Conn )
3 1 2 syl
 |-  ( x e. SConn -> x e. Conn )
4 3 ssriv
 |-  SConn C_ Conn
5 nllyss
 |-  ( SConn C_ Conn -> N-Locally SConn C_ N-Locally Conn )
6 4 5 ax-mp
 |-  N-Locally SConn C_ N-Locally Conn
7 llyssnlly
 |-  Locally SConn C_ N-Locally SConn
8 iillysconn
 |-  II e. Locally SConn
9 7 8 sselii
 |-  II e. N-Locally SConn
10 6 9 sselii
 |-  II e. N-Locally Conn