Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinllyconn | |- II e. N-Locally Conn | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sconnpconn | |- ( x e. SConn -> x e. PConn ) | |
| 2 | pconnconn | |- ( x e. PConn -> x e. Conn ) | |
| 3 | 1 2 | syl | |- ( x e. SConn -> x e. Conn ) | 
| 4 | 3 | ssriv | |- SConn C_ Conn | 
| 5 | nllyss | |- ( SConn C_ Conn -> N-Locally SConn C_ N-Locally Conn ) | |
| 6 | 4 5 | ax-mp | |- N-Locally SConn C_ N-Locally Conn | 
| 7 | llyssnlly | |- Locally SConn C_ N-Locally SConn | |
| 8 | iillysconn | |- II e. Locally SConn | |
| 9 | 7 8 | sselii | |- II e. N-Locally SConn | 
| 10 | 6 9 | sselii | |- II e. N-Locally Conn |