Metamath Proof Explorer


Theorem iinllyconn

Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Assertion iinllyconn II ∈ 𝑛-Locally Conn

Proof

Step Hyp Ref Expression
1 sconnpconn ( 𝑥 ∈ SConn → 𝑥 ∈ PConn )
2 pconnconn ( 𝑥 ∈ PConn → 𝑥 ∈ Conn )
3 1 2 syl ( 𝑥 ∈ SConn → 𝑥 ∈ Conn )
4 3 ssriv SConn ⊆ Conn
5 nllyss ( SConn ⊆ Conn → 𝑛-Locally SConn ⊆ 𝑛-Locally Conn )
6 4 5 ax-mp 𝑛-Locally SConn ⊆ 𝑛-Locally Conn
7 llyssnlly Locally SConn ⊆ 𝑛-Locally SConn
8 iillysconn II ∈ Locally SConn
9 7 8 sselii II ∈ 𝑛-Locally SConn
10 6 9 sselii II ∈ 𝑛-Locally Conn