Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iinllyconn | ⊢ II ∈ 𝑛-Locally Conn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sconnpconn | ⊢ ( 𝑥 ∈ SConn → 𝑥 ∈ PConn ) | |
| 2 | pconnconn | ⊢ ( 𝑥 ∈ PConn → 𝑥 ∈ Conn ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑥 ∈ SConn → 𝑥 ∈ Conn ) |
| 4 | 3 | ssriv | ⊢ SConn ⊆ Conn |
| 5 | nllyss | ⊢ ( SConn ⊆ Conn → 𝑛-Locally SConn ⊆ 𝑛-Locally Conn ) | |
| 6 | 4 5 | ax-mp | ⊢ 𝑛-Locally SConn ⊆ 𝑛-Locally Conn |
| 7 | llyssnlly | ⊢ Locally SConn ⊆ 𝑛-Locally SConn | |
| 8 | iillysconn | ⊢ II ∈ Locally SConn | |
| 9 | 7 8 | sselii | ⊢ II ∈ 𝑛-Locally SConn |
| 10 | 6 9 | sselii | ⊢ II ∈ 𝑛-Locally Conn |