Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | iinllyconn | ⊢ II ∈ 𝑛-Locally Conn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sconnpconn | ⊢ ( 𝑥 ∈ SConn → 𝑥 ∈ PConn ) | |
2 | pconnconn | ⊢ ( 𝑥 ∈ PConn → 𝑥 ∈ Conn ) | |
3 | 1 2 | syl | ⊢ ( 𝑥 ∈ SConn → 𝑥 ∈ Conn ) |
4 | 3 | ssriv | ⊢ SConn ⊆ Conn |
5 | nllyss | ⊢ ( SConn ⊆ Conn → 𝑛-Locally SConn ⊆ 𝑛-Locally Conn ) | |
6 | 4 5 | ax-mp | ⊢ 𝑛-Locally SConn ⊆ 𝑛-Locally Conn |
7 | llyssnlly | ⊢ Locally SConn ⊆ 𝑛-Locally SConn | |
8 | iillysconn | ⊢ II ∈ Locally SConn | |
9 | 7 8 | sselii | ⊢ II ∈ 𝑛-Locally SConn |
10 | 6 9 | sselii | ⊢ II ∈ 𝑛-Locally Conn |