Metamath Proof Explorer


Theorem iinllyconn

Description: The unit interval is locally connected. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Assertion iinllyconn IIN-Locally Conn

Proof

Step Hyp Ref Expression
1 sconnpconn xSConnxPConn
2 pconnconn xPConnxConn
3 1 2 syl xSConnxConn
4 3 ssriv SConnConn
5 nllyss SConnConnN-Locally SConn N-Locally Conn
6 4 5 ax-mp N-Locally SConn N-Locally Conn
7 llyssnlly Locally SConn N-Locally SConn
8 iillysconn IILocally SConn
9 7 8 sselii IIN-Locally SConn
10 6 9 sselii IIN-Locally Conn