Metamath Proof Explorer


Theorem cvmliftlem14

Description: Lemma for cvmlift . Putting the results of cvmliftlem11 , cvmliftlem13 and cvmliftmo together, we have that K is a continuous function, satisfies F o. K = G and K ( 0 ) = P , and is equal to any other function which also has these properties, so it follows that K is the unique lift of G . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem.k K=k=1NQk
Assertion cvmliftlem14 φ∃!fIICnCFf=Gf0=P

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem.k K=k=1NQk
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem11 φKIICnCFK=G
15 14 simpld φKIICnC
16 14 simprd φFK=G
17 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem13 φK0=P
18 coeq2 f=KFf=FK
19 18 eqeq1d f=KFf=GFK=G
20 fveq1 f=Kf0=K0
21 20 eqeq1d f=Kf0=PK0=P
22 19 21 anbi12d f=KFf=Gf0=PFK=GK0=P
23 22 rspcev KIICnCFK=GK0=PfIICnCFf=Gf0=P
24 15 16 17 23 syl12anc φfIICnCFf=Gf0=P
25 iiuni 01=II
26 iiconn IIConn
27 26 a1i φIIConn
28 iinllyconn IIN-Locally Conn
29 28 a1i φIIN-Locally Conn
30 0elunit 001
31 30 a1i φ001
32 2 25 4 27 29 31 5 6 7 cvmliftmo φ*fIICnCFf=Gf0=P
33 reu5 ∃!fIICnCFf=Gf0=PfIICnCFf=Gf0=P*fIICnCFf=Gf0=P
34 24 32 33 sylanbrc φ∃!fIICnCFf=Gf0=P