Step |
Hyp |
Ref |
Expression |
1 |
|
df-ii |
β’ II = ( MetOpen β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) |
2 |
|
cnmet |
β’ ( abs β β ) β ( Met β β ) |
3 |
|
unitssre |
β’ ( 0 [,] 1 ) β β |
4 |
|
ax-resscn |
β’ β β β |
5 |
3 4
|
sstri |
β’ ( 0 [,] 1 ) β β |
6 |
|
metres2 |
β’ ( ( ( abs β β ) β ( Met β β ) β§ ( 0 [,] 1 ) β β ) β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) β ( Met β ( 0 [,] 1 ) ) ) |
7 |
2 5 6
|
mp2an |
β’ ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) β ( Met β ( 0 [,] 1 ) ) |
8 |
7
|
a1i |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) β ( Met β ( 0 [,] 1 ) ) ) |
9 |
|
iicmp |
β’ II β Comp |
10 |
9
|
a1i |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β II β Comp ) |
11 |
|
simpl |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β π β II ) |
12 |
|
simpr |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β ( 0 [,] 1 ) = βͺ π ) |
13 |
1 8 10 11 12
|
lebnum |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β β π β β+ β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ ) |
14 |
|
rpreccl |
β’ ( π β β+ β ( 1 / π ) β β+ ) |
15 |
14
|
adantl |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β ( 1 / π ) β β+ ) |
16 |
15
|
rpred |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β ( 1 / π ) β β ) |
17 |
15
|
rpge0d |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β 0 β€ ( 1 / π ) ) |
18 |
|
flge0nn0 |
β’ ( ( ( 1 / π ) β β β§ 0 β€ ( 1 / π ) ) β ( β β ( 1 / π ) ) β β0 ) |
19 |
16 17 18
|
syl2anc |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β ( β β ( 1 / π ) ) β β0 ) |
20 |
|
nn0p1nn |
β’ ( ( β β ( 1 / π ) ) β β0 β ( ( β β ( 1 / π ) ) + 1 ) β β ) |
21 |
19 20
|
syl |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β ( ( β β ( 1 / π ) ) + 1 ) β β ) |
22 |
|
elfznn |
β’ ( π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) β π β β ) |
23 |
22
|
adantl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β ) |
24 |
23
|
nnrpd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β+ ) |
25 |
21
|
adantr |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( β β ( 1 / π ) ) + 1 ) β β ) |
26 |
25
|
nnrpd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( β β ( 1 / π ) ) + 1 ) β β+ ) |
27 |
24 26
|
rpdivcld |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β β+ ) |
28 |
27
|
rpred |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β β ) |
29 |
27
|
rpge0d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 β€ ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
30 |
|
elfzle2 |
β’ ( π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) β π β€ ( ( β β ( 1 / π ) ) + 1 ) ) |
31 |
30
|
adantl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β€ ( ( β β ( 1 / π ) ) + 1 ) ) |
32 |
25
|
nnred |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( β β ( 1 / π ) ) + 1 ) β β ) |
33 |
32
|
recnd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( β β ( 1 / π ) ) + 1 ) β β ) |
34 |
33
|
mulridd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( β β ( 1 / π ) ) + 1 ) Β· 1 ) = ( ( β β ( 1 / π ) ) + 1 ) ) |
35 |
31 34
|
breqtrrd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β€ ( ( ( β β ( 1 / π ) ) + 1 ) Β· 1 ) ) |
36 |
23
|
nnred |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β ) |
37 |
|
1red |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 1 β β ) |
38 |
25
|
nngt0d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 < ( ( β β ( 1 / π ) ) + 1 ) ) |
39 |
|
ledivmul |
β’ ( ( π β β β§ 1 β β β§ ( ( ( β β ( 1 / π ) ) + 1 ) β β β§ 0 < ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β€ 1 β π β€ ( ( ( β β ( 1 / π ) ) + 1 ) Β· 1 ) ) ) |
40 |
36 37 32 38 39
|
syl112anc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β€ 1 β π β€ ( ( ( β β ( 1 / π ) ) + 1 ) Β· 1 ) ) ) |
41 |
35 40
|
mpbird |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β€ 1 ) |
42 |
|
elicc01 |
β’ ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( 0 [,] 1 ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β β β§ 0 β€ ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β§ ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β€ 1 ) ) |
43 |
28 29 41 42
|
syl3anbrc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( 0 [,] 1 ) ) |
44 |
|
oveq1 |
β’ ( π₯ = ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) = ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) ) |
45 |
44
|
sseq1d |
β’ ( π₯ = ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ ) ) |
46 |
45
|
rexbidv |
β’ ( π₯ = ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π’ β π ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ ) ) |
47 |
46
|
rspcv |
β’ ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( 0 [,] 1 ) β ( β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π’ β π ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ ) ) |
48 |
43 47
|
syl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π’ β π ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ ) ) |
49 |
|
simplr |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β+ ) |
50 |
49
|
rpred |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β ) |
51 |
28 50
|
resubcld |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) β β ) |
52 |
51
|
rexrd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) β β* ) |
53 |
28 50
|
readdcld |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) β β ) |
54 |
53
|
rexrd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) β β* ) |
55 |
|
nnm1nn0 |
β’ ( π β β β ( π β 1 ) β β0 ) |
56 |
23 55
|
syl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π β 1 ) β β0 ) |
57 |
56
|
nn0red |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π β 1 ) β β ) |
58 |
57 25
|
nndivred |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) β β ) |
59 |
36
|
recnd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β ) |
60 |
57
|
recnd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π β 1 ) β β ) |
61 |
25
|
nnne0d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( β β ( 1 / π ) ) + 1 ) β 0 ) |
62 |
59 60 33 61
|
divsubdird |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π β ( π β 1 ) ) / ( ( β β ( 1 / π ) ) + 1 ) ) = ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) ) |
63 |
|
ax-1cn |
β’ 1 β β |
64 |
|
nncan |
β’ ( ( π β β β§ 1 β β ) β ( π β ( π β 1 ) ) = 1 ) |
65 |
59 63 64
|
sylancl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π β ( π β 1 ) ) = 1 ) |
66 |
65
|
oveq1d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π β ( π β 1 ) ) / ( ( β β ( 1 / π ) ) + 1 ) ) = ( 1 / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
67 |
62 66
|
eqtr3d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) = ( 1 / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
68 |
49
|
rprecred |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( 1 / π ) β β ) |
69 |
|
flltp1 |
β’ ( ( 1 / π ) β β β ( 1 / π ) < ( ( β β ( 1 / π ) ) + 1 ) ) |
70 |
68 69
|
syl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( 1 / π ) < ( ( β β ( 1 / π ) ) + 1 ) ) |
71 |
|
rpgt0 |
β’ ( π β β+ β 0 < π ) |
72 |
71
|
ad2antlr |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 < π ) |
73 |
|
ltdiv23 |
β’ ( ( 1 β β β§ ( π β β β§ 0 < π ) β§ ( ( ( β β ( 1 / π ) ) + 1 ) β β β§ 0 < ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( 1 / π ) < ( ( β β ( 1 / π ) ) + 1 ) β ( 1 / ( ( β β ( 1 / π ) ) + 1 ) ) < π ) ) |
74 |
37 50 72 32 38 73
|
syl122anc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( 1 / π ) < ( ( β β ( 1 / π ) ) + 1 ) β ( 1 / ( ( β β ( 1 / π ) ) + 1 ) ) < π ) ) |
75 |
70 74
|
mpbid |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( 1 / ( ( β β ( 1 / π ) ) + 1 ) ) < π ) |
76 |
67 75
|
eqbrtrd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) < π ) |
77 |
28 58 50 76
|
ltsub23d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) < ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
78 |
28 49
|
ltaddrpd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π / ( ( β β ( 1 / π ) ) + 1 ) ) < ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) |
79 |
|
iccssioo |
β’ ( ( ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) β β* β§ ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) β β* ) β§ ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) < ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) β§ ( π / ( ( β β ( 1 / π ) ) + 1 ) ) < ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) ) β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) ) |
80 |
52 54 77 78 79
|
syl22anc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) ) |
81 |
|
0red |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 β β ) |
82 |
56
|
nn0ge0d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 β€ ( π β 1 ) ) |
83 |
|
divge0 |
β’ ( ( ( ( π β 1 ) β β β§ 0 β€ ( π β 1 ) ) β§ ( ( ( β β ( 1 / π ) ) + 1 ) β β β§ 0 < ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 β€ ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
84 |
57 82 32 38 83
|
syl22anc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β 0 β€ ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
85 |
|
iccss |
β’ ( ( ( 0 β β β§ 1 β β ) β§ ( 0 β€ ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) β§ ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β€ 1 ) ) β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( 0 [,] 1 ) ) |
86 |
81 37 84 41 85
|
syl22anc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( 0 [,] 1 ) ) |
87 |
80 86
|
ssind |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) β© ( 0 [,] 1 ) ) ) |
88 |
|
eqid |
β’ ( ( abs β β ) βΎ ( β Γ β ) ) = ( ( abs β β ) βΎ ( β Γ β ) ) |
89 |
88
|
rexmet |
β’ ( ( abs β β ) βΎ ( β Γ β ) ) β ( βMet β β ) |
90 |
|
sseqin2 |
β’ ( ( 0 [,] 1 ) β β β ( β β© ( 0 [,] 1 ) ) = ( 0 [,] 1 ) ) |
91 |
3 90
|
mpbi |
β’ ( β β© ( 0 [,] 1 ) ) = ( 0 [,] 1 ) |
92 |
43 91
|
eleqtrrdi |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( β β© ( 0 [,] 1 ) ) ) |
93 |
|
rpxr |
β’ ( π β β+ β π β β* ) |
94 |
93
|
ad2antlr |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β π β β* ) |
95 |
|
xpss12 |
β’ ( ( ( 0 [,] 1 ) β β β§ ( 0 [,] 1 ) β β ) β ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) β ( β Γ β ) ) |
96 |
3 3 95
|
mp2an |
β’ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) β ( β Γ β ) |
97 |
|
resabs1 |
β’ ( ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) β ( β Γ β ) β ( ( ( abs β β ) βΎ ( β Γ β ) ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) = ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) |
98 |
96 97
|
ax-mp |
β’ ( ( ( abs β β ) βΎ ( β Γ β ) ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) = ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) |
99 |
98
|
eqcomi |
β’ ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) = ( ( ( abs β β ) βΎ ( β Γ β ) ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) |
100 |
99
|
blres |
β’ ( ( ( ( abs β β ) βΎ ( β Γ β ) ) β ( βMet β β ) β§ ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β ( β β© ( 0 [,] 1 ) ) β§ π β β* ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) = ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( β Γ β ) ) ) π ) β© ( 0 [,] 1 ) ) ) |
101 |
89 92 94 100
|
mp3an2i |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) = ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( β Γ β ) ) ) π ) β© ( 0 [,] 1 ) ) ) |
102 |
88
|
bl2ioo |
β’ ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β β β§ π β β ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( β Γ β ) ) ) π ) = ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) ) |
103 |
28 50 102
|
syl2anc |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( β Γ β ) ) ) π ) = ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) ) |
104 |
103
|
ineq1d |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( β Γ β ) ) ) π ) β© ( 0 [,] 1 ) ) = ( ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) β© ( 0 [,] 1 ) ) ) |
105 |
101 104
|
eqtrd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) = ( ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) β π ) (,) ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) + π ) ) β© ( 0 [,] 1 ) ) ) |
106 |
87 105
|
sseqtrrd |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) ) |
107 |
|
sstr2 |
β’ ( ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
108 |
106 107
|
syl |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
109 |
108
|
reximdv |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( β π’ β π ( ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π’ β π ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
110 |
48 109
|
syld |
β’ ( ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β§ π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) β ( β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π’ β π ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
111 |
110
|
ralrimdva |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β ( β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) β π’ β π ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
112 |
|
oveq2 |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( 1 ... π ) = ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) ) |
113 |
|
oveq2 |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( ( π β 1 ) / π ) = ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
114 |
|
oveq2 |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( π / π ) = ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) |
115 |
113 114
|
oveq12d |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( ( ( π β 1 ) / π ) [,] ( π / π ) ) = ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) ) |
116 |
115
|
sseq1d |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ β ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
117 |
116
|
rexbidv |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( β π’ β π ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ β β π’ β π ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
118 |
112 117
|
raleqbidv |
β’ ( π = ( ( β β ( 1 / π ) ) + 1 ) β ( β π β ( 1 ... π ) β π’ β π ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ β β π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) β π’ β π ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) ) |
119 |
118
|
rspcev |
β’ ( ( ( ( β β ( 1 / π ) ) + 1 ) β β β§ β π β ( 1 ... ( ( β β ( 1 / π ) ) + 1 ) ) β π’ β π ( ( ( π β 1 ) / ( ( β β ( 1 / π ) ) + 1 ) ) [,] ( π / ( ( β β ( 1 / π ) ) + 1 ) ) ) β π’ ) β β π β β β π β ( 1 ... π ) β π’ β π ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ ) |
120 |
21 111 119
|
syl6an |
β’ ( ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β§ π β β+ ) β ( β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π β β β π β ( 1 ... π ) β π’ β π ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ ) ) |
121 |
120
|
rexlimdva |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β ( β π β β+ β π₯ β ( 0 [,] 1 ) β π’ β π ( π₯ ( ball β ( ( abs β β ) βΎ ( ( 0 [,] 1 ) Γ ( 0 [,] 1 ) ) ) ) π ) β π’ β β π β β β π β ( 1 ... π ) β π’ β π ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ ) ) |
122 |
13 121
|
mpd |
β’ ( ( π β II β§ ( 0 [,] 1 ) = βͺ π ) β β π β β β π β ( 1 ... π ) β π’ β π ( ( ( π β 1 ) / π ) [,] ( π / π ) ) β π’ ) |