| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ii |
⊢ II = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
| 2 |
|
cnmet |
⊢ ( abs ∘ − ) ∈ ( Met ‘ ℂ ) |
| 3 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
| 4 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 5 |
3 4
|
sstri |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 6 |
|
metres2 |
⊢ ( ( ( abs ∘ − ) ∈ ( Met ‘ ℂ ) ∧ ( 0 [,] 1 ) ⊆ ℂ ) → ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( Met ‘ ( 0 [,] 1 ) ) ) |
| 7 |
2 5 6
|
mp2an |
⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( Met ‘ ( 0 [,] 1 ) ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ∈ ( Met ‘ ( 0 [,] 1 ) ) ) |
| 9 |
|
iicmp |
⊢ II ∈ Comp |
| 10 |
9
|
a1i |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → II ∈ Comp ) |
| 11 |
|
simpl |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → 𝑈 ⊆ II ) |
| 12 |
|
simpr |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ( 0 [,] 1 ) = ∪ 𝑈 ) |
| 13 |
1 8 10 11 12
|
lebnum |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) |
| 14 |
|
rpreccl |
⊢ ( 𝑟 ∈ ℝ+ → ( 1 / 𝑟 ) ∈ ℝ+ ) |
| 15 |
14
|
adantl |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( 1 / 𝑟 ) ∈ ℝ+ ) |
| 16 |
15
|
rpred |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( 1 / 𝑟 ) ∈ ℝ ) |
| 17 |
15
|
rpge0d |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝑟 ) ) |
| 18 |
|
flge0nn0 |
⊢ ( ( ( 1 / 𝑟 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑟 ) ) → ( ⌊ ‘ ( 1 / 𝑟 ) ) ∈ ℕ0 ) |
| 19 |
16 17 18
|
syl2anc |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ⌊ ‘ ( 1 / 𝑟 ) ) ∈ ℕ0 ) |
| 20 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 1 / 𝑟 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ) |
| 21 |
19 20
|
syl |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ) |
| 22 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → 𝑘 ∈ ℕ ) |
| 23 |
22
|
adantl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 24 |
23
|
nnrpd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℝ+ ) |
| 25 |
21
|
adantr |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ) |
| 26 |
25
|
nnrpd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ+ ) |
| 27 |
24 26
|
rpdivcld |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ+ ) |
| 28 |
27
|
rpred |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ) |
| 29 |
27
|
rpge0d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 30 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → 𝑘 ≤ ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 31 |
30
|
adantl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ≤ ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 32 |
25
|
nnred |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ) |
| 33 |
32
|
recnd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℂ ) |
| 34 |
33
|
mulridd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 35 |
31 34
|
breqtrrd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ≤ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) ) |
| 36 |
23
|
nnred |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 37 |
|
1red |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 1 ∈ ℝ ) |
| 38 |
25
|
nngt0d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 39 |
|
ledivmul |
⊢ ( ( 𝑘 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ↔ 𝑘 ≤ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) ) ) |
| 40 |
36 37 32 38 39
|
syl112anc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ↔ 𝑘 ≤ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) · 1 ) ) ) |
| 41 |
35 40
|
mpbird |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ) |
| 42 |
|
elicc01 |
⊢ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ) ) |
| 43 |
28 29 41 42
|
syl3anbrc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( 0 [,] 1 ) ) |
| 44 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ) |
| 45 |
44
|
sseq1d |
⊢ ( 𝑥 = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → ( ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ↔ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 46 |
45
|
rexbidv |
⊢ ( 𝑥 = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) → ( ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 47 |
46
|
rspcv |
⊢ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( 0 [,] 1 ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 48 |
43 47
|
syl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 ) ) |
| 49 |
|
simplr |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑟 ∈ ℝ+ ) |
| 50 |
49
|
rpred |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑟 ∈ ℝ ) |
| 51 |
28 50
|
resubcld |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) ∈ ℝ ) |
| 52 |
51
|
rexrd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) ∈ ℝ* ) |
| 53 |
28 50
|
readdcld |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ∈ ℝ ) |
| 54 |
53
|
rexrd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ∈ ℝ* ) |
| 55 |
|
nnm1nn0 |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 56 |
23 55
|
syl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℕ0 ) |
| 57 |
56
|
nn0red |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℝ ) |
| 58 |
57 25
|
nndivred |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ) |
| 59 |
36
|
recnd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 60 |
57
|
recnd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − 1 ) ∈ ℂ ) |
| 61 |
25
|
nnne0d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ≠ 0 ) |
| 62 |
59 60 33 61
|
divsubdird |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 − ( 𝑘 − 1 ) ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) = ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ) |
| 63 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 64 |
|
nncan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑘 − ( 𝑘 − 1 ) ) = 1 ) |
| 65 |
59 63 64
|
sylancl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 − ( 𝑘 − 1 ) ) = 1 ) |
| 66 |
65
|
oveq1d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 − ( 𝑘 − 1 ) ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) = ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 67 |
62 66
|
eqtr3d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) = ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 68 |
49
|
rprecred |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 1 / 𝑟 ) ∈ ℝ ) |
| 69 |
|
flltp1 |
⊢ ( ( 1 / 𝑟 ) ∈ ℝ → ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 70 |
68 69
|
syl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) |
| 71 |
|
rpgt0 |
⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) |
| 72 |
71
|
ad2antlr |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 < 𝑟 ) |
| 73 |
|
ltdiv23 |
⊢ ( ( 1 ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ∧ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < 𝑟 ) ) |
| 74 |
37 50 72 32 38 73
|
syl122anc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 1 / 𝑟 ) < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ↔ ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < 𝑟 ) ) |
| 75 |
70 74
|
mpbid |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 1 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < 𝑟 ) |
| 76 |
67 75
|
eqbrtrd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) < 𝑟 ) |
| 77 |
28 58 50 76
|
ltsub23d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) < ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 78 |
28 49
|
ltaddrpd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) |
| 79 |
|
iccssioo |
⊢ ( ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) ∈ ℝ* ∧ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ∈ ℝ* ) ∧ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) < ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) < ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 80 |
52 54 77 78 79
|
syl22anc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 81 |
|
0red |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ∈ ℝ ) |
| 82 |
56
|
nn0ge0d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( 𝑘 − 1 ) ) |
| 83 |
|
divge0 |
⊢ ( ( ( ( 𝑘 − 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑘 − 1 ) ) ∧ ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 84 |
57 82 32 38 83
|
syl22anc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 0 ≤ ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 85 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ≤ 1 ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( 0 [,] 1 ) ) |
| 86 |
81 37 84 41 85
|
syl22anc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( 0 [,] 1 ) ) |
| 87 |
80 86
|
ssind |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ∩ ( 0 [,] 1 ) ) ) |
| 88 |
|
eqid |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 89 |
88
|
rexmet |
⊢ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) |
| 90 |
|
sseqin2 |
⊢ ( ( 0 [,] 1 ) ⊆ ℝ ↔ ( ℝ ∩ ( 0 [,] 1 ) ) = ( 0 [,] 1 ) ) |
| 91 |
3 90
|
mpbi |
⊢ ( ℝ ∩ ( 0 [,] 1 ) ) = ( 0 [,] 1 ) |
| 92 |
43 91
|
eleqtrrdi |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( ℝ ∩ ( 0 [,] 1 ) ) ) |
| 93 |
|
rpxr |
⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) |
| 94 |
93
|
ad2antlr |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → 𝑟 ∈ ℝ* ) |
| 95 |
|
xpss12 |
⊢ ( ( ( 0 [,] 1 ) ⊆ ℝ ∧ ( 0 [,] 1 ) ⊆ ℝ ) → ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℝ × ℝ ) ) |
| 96 |
3 3 95
|
mp2an |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℝ × ℝ ) |
| 97 |
|
resabs1 |
⊢ ( ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⊆ ( ℝ × ℝ ) → ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) |
| 98 |
96 97
|
ax-mp |
⊢ ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 99 |
98
|
eqcomi |
⊢ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) = ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 100 |
99
|
blres |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ∈ ( ∞Met ‘ ℝ ) ∧ ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ( ℝ ∩ ( 0 [,] 1 ) ) ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ∩ ( 0 [,] 1 ) ) ) |
| 101 |
89 92 94 100
|
mp3an2i |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ∩ ( 0 [,] 1 ) ) ) |
| 102 |
88
|
bl2ioo |
⊢ ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 103 |
28 50 102
|
syl2anc |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) = ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ) |
| 104 |
103
|
ineq1d |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) ) 𝑟 ) ∩ ( 0 [,] 1 ) ) = ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ∩ ( 0 [,] 1 ) ) ) |
| 105 |
101 104
|
eqtrd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) = ( ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) − 𝑟 ) (,) ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) + 𝑟 ) ) ∩ ( 0 [,] 1 ) ) ) |
| 106 |
87 105
|
sseqtrrd |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ) |
| 107 |
|
sstr2 |
⊢ ( ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) → ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 108 |
106 107
|
syl |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 109 |
108
|
reximdv |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ∃ 𝑢 ∈ 𝑈 ( ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 110 |
48 109
|
syld |
⊢ ( ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 111 |
110
|
ralrimdva |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∀ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 112 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 113 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ( 𝑘 − 1 ) / 𝑛 ) = ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 114 |
|
oveq2 |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( 𝑘 / 𝑛 ) = ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) |
| 115 |
113 114
|
oveq12d |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) = ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ) |
| 116 |
115
|
sseq1d |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ↔ ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 117 |
116
|
rexbidv |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ↔ ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 118 |
112 117
|
raleqbidv |
⊢ ( 𝑛 = ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ↔ ∀ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) ) |
| 119 |
118
|
rspcev |
⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) [,] ( 𝑘 / ( ( ⌊ ‘ ( 1 / 𝑟 ) ) + 1 ) ) ) ⊆ 𝑢 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) |
| 120 |
21 111 119
|
syl6an |
⊢ ( ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) ∧ 𝑟 ∈ ℝ+ ) → ( ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) ) |
| 121 |
120
|
rexlimdva |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ( ∃ 𝑟 ∈ ℝ+ ∀ 𝑥 ∈ ( 0 [,] 1 ) ∃ 𝑢 ∈ 𝑈 ( 𝑥 ( ball ‘ ( ( abs ∘ − ) ↾ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) ) 𝑟 ) ⊆ 𝑢 → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) ) |
| 122 |
13 121
|
mpd |
⊢ ( ( 𝑈 ⊆ II ∧ ( 0 [,] 1 ) = ∪ 𝑈 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑘 ∈ ( 1 ... 𝑛 ) ∃ 𝑢 ∈ 𝑈 ( ( ( 𝑘 − 1 ) / 𝑛 ) [,] ( 𝑘 / 𝑛 ) ) ⊆ 𝑢 ) |