Step |
Hyp |
Ref |
Expression |
1 |
|
df-ii |
|- II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
2 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
3 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
3 4
|
sstri |
|- ( 0 [,] 1 ) C_ CC |
6 |
|
metres2 |
|- ( ( ( abs o. - ) e. ( Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) ) |
7 |
2 5 6
|
mp2an |
|- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) |
8 |
7
|
a1i |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) ) |
9 |
|
iicmp |
|- II e. Comp |
10 |
9
|
a1i |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> II e. Comp ) |
11 |
|
simpl |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> U C_ II ) |
12 |
|
simpr |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( 0 [,] 1 ) = U. U ) |
13 |
1 8 10 11 12
|
lebnum |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. r e. RR+ A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) |
14 |
|
rpreccl |
|- ( r e. RR+ -> ( 1 / r ) e. RR+ ) |
15 |
14
|
adantl |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( 1 / r ) e. RR+ ) |
16 |
15
|
rpred |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( 1 / r ) e. RR ) |
17 |
15
|
rpge0d |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> 0 <_ ( 1 / r ) ) |
18 |
|
flge0nn0 |
|- ( ( ( 1 / r ) e. RR /\ 0 <_ ( 1 / r ) ) -> ( |_ ` ( 1 / r ) ) e. NN0 ) |
19 |
16 17 18
|
syl2anc |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( |_ ` ( 1 / r ) ) e. NN0 ) |
20 |
|
nn0p1nn |
|- ( ( |_ ` ( 1 / r ) ) e. NN0 -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) |
21 |
19 20
|
syl |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) |
22 |
|
elfznn |
|- ( k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> k e. NN ) |
23 |
22
|
adantl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. NN ) |
24 |
23
|
nnrpd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. RR+ ) |
25 |
21
|
adantr |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) |
26 |
25
|
nnrpd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR+ ) |
27 |
24 26
|
rpdivcld |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR+ ) |
28 |
27
|
rpred |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR ) |
29 |
27
|
rpge0d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
30 |
|
elfzle2 |
|- ( k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> k <_ ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
31 |
30
|
adantl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k <_ ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
32 |
25
|
nnred |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR ) |
33 |
32
|
recnd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. CC ) |
34 |
33
|
mulid1d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) = ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
35 |
31 34
|
breqtrrd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) |
36 |
23
|
nnred |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. RR ) |
37 |
|
1red |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 1 e. RR ) |
38 |
25
|
nngt0d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
39 |
|
ledivmul |
|- ( ( k e. RR /\ 1 e. RR /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 <-> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) ) |
40 |
36 37 32 38 39
|
syl112anc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 <-> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) ) |
41 |
35 40
|
mpbird |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) |
42 |
|
elicc01 |
|- ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) <-> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR /\ 0 <_ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) ) |
43 |
28 29 41 42
|
syl3anbrc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) ) |
44 |
|
oveq1 |
|- ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) ) |
45 |
44
|
sseq1d |
|- ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u <-> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
46 |
45
|
rexbidv |
|- ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u <-> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
47 |
46
|
rspcv |
|- ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
48 |
43 47
|
syl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) |
49 |
|
simplr |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR+ ) |
50 |
49
|
rpred |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR ) |
51 |
28 50
|
resubcld |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR ) |
52 |
51
|
rexrd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR* ) |
53 |
28 50
|
readdcld |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR ) |
54 |
53
|
rexrd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR* ) |
55 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
56 |
23 55
|
syl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. NN0 ) |
57 |
56
|
nn0red |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. RR ) |
58 |
57 25
|
nndivred |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR ) |
59 |
36
|
recnd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. CC ) |
60 |
57
|
recnd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. CC ) |
61 |
25
|
nnne0d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) =/= 0 ) |
62 |
59 60 33 61
|
divsubdird |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - ( k - 1 ) ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) = ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) ) |
63 |
|
ax-1cn |
|- 1 e. CC |
64 |
|
nncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( k - ( k - 1 ) ) = 1 ) |
65 |
59 63 64
|
sylancl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - ( k - 1 ) ) = 1 ) |
66 |
65
|
oveq1d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - ( k - 1 ) ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) = ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
67 |
62 66
|
eqtr3d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) = ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
68 |
49
|
rprecred |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / r ) e. RR ) |
69 |
|
flltp1 |
|- ( ( 1 / r ) e. RR -> ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
70 |
68 69
|
syl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) ) |
71 |
|
rpgt0 |
|- ( r e. RR+ -> 0 < r ) |
72 |
71
|
ad2antlr |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 < r ) |
73 |
|
ltdiv23 |
|- ( ( 1 e. RR /\ ( r e. RR /\ 0 < r ) /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) <-> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) ) |
74 |
37 50 72 32 38 73
|
syl122anc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) <-> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) ) |
75 |
70 74
|
mpbid |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) |
76 |
67 75
|
eqbrtrd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) < r ) |
77 |
28 58 50 76
|
ltsub23d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) < ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
78 |
28 49
|
ltaddrpd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) |
79 |
|
iccssioo |
|- ( ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR* /\ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR* ) /\ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) < ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
80 |
52 54 77 78 79
|
syl22anc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
81 |
|
0red |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 e. RR ) |
82 |
56
|
nn0ge0d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( k - 1 ) ) |
83 |
|
divge0 |
|- ( ( ( ( k - 1 ) e. RR /\ 0 <_ ( k - 1 ) ) /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
84 |
57 82 32 38 83
|
syl22anc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
85 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( 0 [,] 1 ) ) |
86 |
81 37 84 41 85
|
syl22anc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( 0 [,] 1 ) ) |
87 |
80 86
|
ssind |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) |
88 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
89 |
88
|
rexmet |
|- ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) |
90 |
|
sseqin2 |
|- ( ( 0 [,] 1 ) C_ RR <-> ( RR i^i ( 0 [,] 1 ) ) = ( 0 [,] 1 ) ) |
91 |
3 90
|
mpbi |
|- ( RR i^i ( 0 [,] 1 ) ) = ( 0 [,] 1 ) |
92 |
43 91
|
eleqtrrdi |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( RR i^i ( 0 [,] 1 ) ) ) |
93 |
|
rpxr |
|- ( r e. RR+ -> r e. RR* ) |
94 |
93
|
ad2antlr |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR* ) |
95 |
|
xpss12 |
|- ( ( ( 0 [,] 1 ) C_ RR /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) ) |
96 |
3 3 95
|
mp2an |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) |
97 |
|
resabs1 |
|- ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) |
98 |
96 97
|
ax-mp |
|- ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
99 |
98
|
eqcomi |
|- ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
100 |
99
|
blres |
|- ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( RR i^i ( 0 [,] 1 ) ) /\ r e. RR* ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) ) |
101 |
89 92 94 100
|
mp3an2i |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) ) |
102 |
88
|
bl2ioo |
|- ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR /\ r e. RR ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
103 |
28 50 102
|
syl2anc |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) |
104 |
103
|
ineq1d |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) = ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) |
105 |
101 104
|
eqtrd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) |
106 |
87 105
|
sseqtrrd |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) ) |
107 |
|
sstr2 |
|- ( ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
108 |
106 107
|
syl |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
109 |
108
|
reximdv |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
110 |
48 109
|
syld |
|- ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
111 |
110
|
ralrimdva |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
112 |
|
oveq2 |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( 1 ... n ) = ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
113 |
|
oveq2 |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( k - 1 ) / n ) = ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
114 |
|
oveq2 |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( k / n ) = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) |
115 |
113 114
|
oveq12d |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( ( k - 1 ) / n ) [,] ( k / n ) ) = ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) ) |
116 |
115
|
sseq1d |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
117 |
116
|
rexbidv |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
118 |
112 117
|
raleqbidv |
|- ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) |
119 |
118
|
rspcev |
|- ( ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN /\ A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) |
120 |
21 111 119
|
syl6an |
|- ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) ) |
121 |
120
|
rexlimdva |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( E. r e. RR+ A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) ) |
122 |
13 121
|
mpd |
|- ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) |