| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-ii |  |-  II = ( MetOpen ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 2 |  | cnmet |  |-  ( abs o. - ) e. ( Met ` CC ) | 
						
							| 3 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 4 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 5 | 3 4 | sstri |  |-  ( 0 [,] 1 ) C_ CC | 
						
							| 6 |  | metres2 |  |-  ( ( ( abs o. - ) e. ( Met ` CC ) /\ ( 0 [,] 1 ) C_ CC ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) ) | 
						
							| 7 | 2 5 6 | mp2an |  |-  ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) e. ( Met ` ( 0 [,] 1 ) ) ) | 
						
							| 9 |  | iicmp |  |-  II e. Comp | 
						
							| 10 | 9 | a1i |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> II e. Comp ) | 
						
							| 11 |  | simpl |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> U C_ II ) | 
						
							| 12 |  | simpr |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( 0 [,] 1 ) = U. U ) | 
						
							| 13 | 1 8 10 11 12 | lebnum |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. r e. RR+ A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) | 
						
							| 14 |  | rpreccl |  |-  ( r e. RR+ -> ( 1 / r ) e. RR+ ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( 1 / r ) e. RR+ ) | 
						
							| 16 | 15 | rpred |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( 1 / r ) e. RR ) | 
						
							| 17 | 15 | rpge0d |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> 0 <_ ( 1 / r ) ) | 
						
							| 18 |  | flge0nn0 |  |-  ( ( ( 1 / r ) e. RR /\ 0 <_ ( 1 / r ) ) -> ( |_ ` ( 1 / r ) ) e. NN0 ) | 
						
							| 19 | 16 17 18 | syl2anc |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( |_ ` ( 1 / r ) ) e. NN0 ) | 
						
							| 20 |  | nn0p1nn |  |-  ( ( |_ ` ( 1 / r ) ) e. NN0 -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) | 
						
							| 21 | 19 20 | syl |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) | 
						
							| 22 |  | elfznn |  |-  ( k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> k e. NN ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. NN ) | 
						
							| 24 | 23 | nnrpd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. RR+ ) | 
						
							| 25 | 21 | adantr |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN ) | 
						
							| 26 | 25 | nnrpd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR+ ) | 
						
							| 27 | 24 26 | rpdivcld |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR+ ) | 
						
							| 28 | 27 | rpred |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR ) | 
						
							| 29 | 27 | rpge0d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 30 |  | elfzle2 |  |-  ( k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> k <_ ( ( |_ ` ( 1 / r ) ) + 1 ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k <_ ( ( |_ ` ( 1 / r ) ) + 1 ) ) | 
						
							| 32 | 25 | nnred |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) e. CC ) | 
						
							| 34 | 33 | mulridd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) = ( ( |_ ` ( 1 / r ) ) + 1 ) ) | 
						
							| 35 | 31 34 | breqtrrd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) | 
						
							| 36 | 23 | nnred |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. RR ) | 
						
							| 37 |  | 1red |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 1 e. RR ) | 
						
							| 38 | 25 | nngt0d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) | 
						
							| 39 |  | ledivmul |  |-  ( ( k e. RR /\ 1 e. RR /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 <-> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) ) | 
						
							| 40 | 36 37 32 38 39 | syl112anc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 <-> k <_ ( ( ( |_ ` ( 1 / r ) ) + 1 ) x. 1 ) ) ) | 
						
							| 41 | 35 40 | mpbird |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) | 
						
							| 42 |  | elicc01 |  |-  ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) <-> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR /\ 0 <_ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) ) | 
						
							| 43 | 28 29 41 42 | syl3anbrc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) ) | 
						
							| 44 |  | oveq1 |  |-  ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) ) | 
						
							| 45 | 44 | sseq1d |  |-  ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u <-> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) | 
						
							| 46 | 45 | rexbidv |  |-  ( x = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) -> ( E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u <-> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) | 
						
							| 47 | 46 | rspcv |  |-  ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( 0 [,] 1 ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) | 
						
							| 48 | 43 47 | syl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u ) ) | 
						
							| 49 |  | simplr |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR+ ) | 
						
							| 50 | 49 | rpred |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR ) | 
						
							| 51 | 28 50 | resubcld |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR ) | 
						
							| 52 | 51 | rexrd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR* ) | 
						
							| 53 | 28 50 | readdcld |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR ) | 
						
							| 54 | 53 | rexrd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR* ) | 
						
							| 55 |  | nnm1nn0 |  |-  ( k e. NN -> ( k - 1 ) e. NN0 ) | 
						
							| 56 | 23 55 | syl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. NN0 ) | 
						
							| 57 | 56 | nn0red |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. RR ) | 
						
							| 58 | 57 25 | nndivred |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR ) | 
						
							| 59 | 36 | recnd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> k e. CC ) | 
						
							| 60 | 57 | recnd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - 1 ) e. CC ) | 
						
							| 61 | 25 | nnne0d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( |_ ` ( 1 / r ) ) + 1 ) =/= 0 ) | 
						
							| 62 | 59 60 33 61 | divsubdird |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - ( k - 1 ) ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) = ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) ) | 
						
							| 63 |  | ax-1cn |  |-  1 e. CC | 
						
							| 64 |  | nncan |  |-  ( ( k e. CC /\ 1 e. CC ) -> ( k - ( k - 1 ) ) = 1 ) | 
						
							| 65 | 59 63 64 | sylancl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k - ( k - 1 ) ) = 1 ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k - ( k - 1 ) ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) = ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 67 | 62 66 | eqtr3d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) = ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 68 | 49 | rprecred |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / r ) e. RR ) | 
						
							| 69 |  | flltp1 |  |-  ( ( 1 / r ) e. RR -> ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) ) | 
						
							| 71 |  | rpgt0 |  |-  ( r e. RR+ -> 0 < r ) | 
						
							| 72 | 71 | ad2antlr |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 < r ) | 
						
							| 73 |  | ltdiv23 |  |-  ( ( 1 e. RR /\ ( r e. RR /\ 0 < r ) /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) <-> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) ) | 
						
							| 74 | 37 50 72 32 38 73 | syl122anc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( 1 / r ) < ( ( |_ ` ( 1 / r ) ) + 1 ) <-> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) ) | 
						
							| 75 | 70 74 | mpbid |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( 1 / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < r ) | 
						
							| 76 | 67 75 | eqbrtrd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) < r ) | 
						
							| 77 | 28 58 50 76 | ltsub23d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) < ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 78 | 28 49 | ltaddrpd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) | 
						
							| 79 |  | iccssioo |  |-  ( ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) e. RR* /\ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) e. RR* ) /\ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) < ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) < ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) | 
						
							| 80 | 52 54 77 78 79 | syl22anc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) | 
						
							| 81 |  | 0red |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 e. RR ) | 
						
							| 82 | 56 | nn0ge0d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( k - 1 ) ) | 
						
							| 83 |  | divge0 |  |-  ( ( ( ( k - 1 ) e. RR /\ 0 <_ ( k - 1 ) ) /\ ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. RR /\ 0 < ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 84 | 57 82 32 38 83 | syl22anc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 85 |  | iccss |  |-  ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) <_ 1 ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( 0 [,] 1 ) ) | 
						
							| 86 | 81 37 84 41 85 | syl22anc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( 0 [,] 1 ) ) | 
						
							| 87 | 80 86 | ssind |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) | 
						
							| 88 |  | eqid |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 89 | 88 | rexmet |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) | 
						
							| 90 |  | sseqin2 |  |-  ( ( 0 [,] 1 ) C_ RR <-> ( RR i^i ( 0 [,] 1 ) ) = ( 0 [,] 1 ) ) | 
						
							| 91 | 3 90 | mpbi |  |-  ( RR i^i ( 0 [,] 1 ) ) = ( 0 [,] 1 ) | 
						
							| 92 | 43 91 | eleqtrrdi |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( RR i^i ( 0 [,] 1 ) ) ) | 
						
							| 93 |  | rpxr |  |-  ( r e. RR+ -> r e. RR* ) | 
						
							| 94 | 93 | ad2antlr |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> r e. RR* ) | 
						
							| 95 |  | xpss12 |  |-  ( ( ( 0 [,] 1 ) C_ RR /\ ( 0 [,] 1 ) C_ RR ) -> ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) ) | 
						
							| 96 | 3 3 95 | mp2an |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) | 
						
							| 97 |  | resabs1 |  |-  ( ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) C_ ( RR X. RR ) -> ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) | 
						
							| 98 | 96 97 | ax-mp |  |-  ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 99 | 98 | eqcomi |  |-  ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) = ( ( ( abs o. - ) |` ( RR X. RR ) ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 100 | 99 | blres |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` RR ) /\ ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. ( RR i^i ( 0 [,] 1 ) ) /\ r e. RR* ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) ) | 
						
							| 101 | 89 92 94 100 | mp3an2i |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) ) | 
						
							| 102 | 88 | bl2ioo |  |-  ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) e. RR /\ r e. RR ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) | 
						
							| 103 | 28 50 102 | syl2anc |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) = ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) ) | 
						
							| 104 | 103 | ineq1d |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) r ) i^i ( 0 [,] 1 ) ) = ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) | 
						
							| 105 | 101 104 | eqtrd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) = ( ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) - r ) (,) ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) + r ) ) i^i ( 0 [,] 1 ) ) ) | 
						
							| 106 | 87 105 | sseqtrrd |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) ) | 
						
							| 107 |  | sstr2 |  |-  ( ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 109 | 108 | reximdv |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( E. u e. U ( ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 110 | 48 109 | syld |  |-  ( ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) /\ k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 111 | 110 | ralrimdva |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 112 |  | oveq2 |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( 1 ... n ) = ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 113 |  | oveq2 |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( k - 1 ) / n ) = ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 114 |  | oveq2 |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( k / n ) = ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) | 
						
							| 115 | 113 114 | oveq12d |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( ( k - 1 ) / n ) [,] ( k / n ) ) = ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) ) | 
						
							| 116 | 115 | sseq1d |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 117 | 116 | rexbidv |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 118 | 112 117 | raleqbidv |  |-  ( n = ( ( |_ ` ( 1 / r ) ) + 1 ) -> ( A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u <-> A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) ) | 
						
							| 119 | 118 | rspcev |  |-  ( ( ( ( |_ ` ( 1 / r ) ) + 1 ) e. NN /\ A. k e. ( 1 ... ( ( |_ ` ( 1 / r ) ) + 1 ) ) E. u e. U ( ( ( k - 1 ) / ( ( |_ ` ( 1 / r ) ) + 1 ) ) [,] ( k / ( ( |_ ` ( 1 / r ) ) + 1 ) ) ) C_ u ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) | 
						
							| 120 | 21 111 119 | syl6an |  |-  ( ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) /\ r e. RR+ ) -> ( A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) ) | 
						
							| 121 | 120 | rexlimdva |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> ( E. r e. RR+ A. x e. ( 0 [,] 1 ) E. u e. U ( x ( ball ` ( ( abs o. - ) |` ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) ) r ) C_ u -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) ) | 
						
							| 122 | 13 121 | mpd |  |-  ( ( U C_ II /\ ( 0 [,] 1 ) = U. U ) -> E. n e. NN A. k e. ( 1 ... n ) E. u e. U ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ u ) |