| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftiota.b |  |-  B = U. C | 
						
							| 2 |  | cvmliftiota.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 3 |  | cvmliftiota.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmliftiota.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 5 |  | cvmliftiota.p |  |-  ( ph -> P e. B ) | 
						
							| 6 |  | cvmliftiota.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 7 |  | coeq2 |  |-  ( f = g -> ( F o. f ) = ( F o. g ) ) | 
						
							| 8 | 7 | eqeq1d |  |-  ( f = g -> ( ( F o. f ) = G <-> ( F o. g ) = G ) ) | 
						
							| 9 |  | fveq1 |  |-  ( f = g -> ( f ` 0 ) = ( g ` 0 ) ) | 
						
							| 10 | 9 | eqeq1d |  |-  ( f = g -> ( ( f ` 0 ) = P <-> ( g ` 0 ) = P ) ) | 
						
							| 11 | 8 10 | anbi12d |  |-  ( f = g -> ( ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) ) | 
						
							| 12 | 11 | cbvriotavw |  |-  ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) | 
						
							| 13 | 2 12 | eqtri |  |-  H = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) | 
						
							| 14 | 1 | cvmlift |  |-  ( ( ( F e. ( C CovMap J ) /\ G e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( G ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) | 
						
							| 15 | 3 4 5 6 14 | syl22anc |  |-  ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) | 
						
							| 16 |  | riotacl2 |  |-  ( E! g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } ) | 
						
							| 18 | 13 17 | eqeltrid |  |-  ( ph -> H e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } ) | 
						
							| 19 |  | coeq2 |  |-  ( g = H -> ( F o. g ) = ( F o. H ) ) | 
						
							| 20 | 19 | eqeq1d |  |-  ( g = H -> ( ( F o. g ) = G <-> ( F o. H ) = G ) ) | 
						
							| 21 |  | fveq1 |  |-  ( g = H -> ( g ` 0 ) = ( H ` 0 ) ) | 
						
							| 22 | 21 | eqeq1d |  |-  ( g = H -> ( ( g ` 0 ) = P <-> ( H ` 0 ) = P ) ) | 
						
							| 23 | 20 22 | anbi12d |  |-  ( g = H -> ( ( ( F o. g ) = G /\ ( g ` 0 ) = P ) <-> ( ( F o. H ) = G /\ ( H ` 0 ) = P ) ) ) | 
						
							| 24 | 23 | elrab |  |-  ( H e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } <-> ( H e. ( II Cn C ) /\ ( ( F o. H ) = G /\ ( H ` 0 ) = P ) ) ) | 
						
							| 25 |  | 3anass |  |-  ( ( H e. ( II Cn C ) /\ ( F o. H ) = G /\ ( H ` 0 ) = P ) <-> ( H e. ( II Cn C ) /\ ( ( F o. H ) = G /\ ( H ` 0 ) = P ) ) ) | 
						
							| 26 | 24 25 | bitr4i |  |-  ( H e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } <-> ( H e. ( II Cn C ) /\ ( F o. H ) = G /\ ( H ` 0 ) = P ) ) | 
						
							| 27 | 18 26 | sylib |  |-  ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = G /\ ( H ` 0 ) = P ) ) |