Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftiota.b |
|- B = U. C |
2 |
|
cvmliftiota.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |
3 |
|
cvmliftiota.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmliftiota.g |
|- ( ph -> G e. ( II Cn J ) ) |
5 |
|
cvmliftiota.p |
|- ( ph -> P e. B ) |
6 |
|
cvmliftiota.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
7 |
|
coeq2 |
|- ( f = g -> ( F o. f ) = ( F o. g ) ) |
8 |
7
|
eqeq1d |
|- ( f = g -> ( ( F o. f ) = G <-> ( F o. g ) = G ) ) |
9 |
|
fveq1 |
|- ( f = g -> ( f ` 0 ) = ( g ` 0 ) ) |
10 |
9
|
eqeq1d |
|- ( f = g -> ( ( f ` 0 ) = P <-> ( g ` 0 ) = P ) ) |
11 |
8 10
|
anbi12d |
|- ( f = g -> ( ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) ) |
12 |
11
|
cbvriotavw |
|- ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) |
13 |
2 12
|
eqtri |
|- H = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) |
14 |
1
|
cvmlift |
|- ( ( ( F e. ( C CovMap J ) /\ G e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( G ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) |
15 |
3 4 5 6 14
|
syl22anc |
|- ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) |
16 |
|
riotacl2 |
|- ( E! g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } ) |
17 |
15 16
|
syl |
|- ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = G /\ ( g ` 0 ) = P ) ) e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } ) |
18 |
13 17
|
eqeltrid |
|- ( ph -> H e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } ) |
19 |
|
coeq2 |
|- ( g = H -> ( F o. g ) = ( F o. H ) ) |
20 |
19
|
eqeq1d |
|- ( g = H -> ( ( F o. g ) = G <-> ( F o. H ) = G ) ) |
21 |
|
fveq1 |
|- ( g = H -> ( g ` 0 ) = ( H ` 0 ) ) |
22 |
21
|
eqeq1d |
|- ( g = H -> ( ( g ` 0 ) = P <-> ( H ` 0 ) = P ) ) |
23 |
20 22
|
anbi12d |
|- ( g = H -> ( ( ( F o. g ) = G /\ ( g ` 0 ) = P ) <-> ( ( F o. H ) = G /\ ( H ` 0 ) = P ) ) ) |
24 |
23
|
elrab |
|- ( H e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } <-> ( H e. ( II Cn C ) /\ ( ( F o. H ) = G /\ ( H ` 0 ) = P ) ) ) |
25 |
|
3anass |
|- ( ( H e. ( II Cn C ) /\ ( F o. H ) = G /\ ( H ` 0 ) = P ) <-> ( H e. ( II Cn C ) /\ ( ( F o. H ) = G /\ ( H ` 0 ) = P ) ) ) |
26 |
24 25
|
bitr4i |
|- ( H e. { g e. ( II Cn C ) | ( ( F o. g ) = G /\ ( g ` 0 ) = P ) } <-> ( H e. ( II Cn C ) /\ ( F o. H ) = G /\ ( H ` 0 ) = P ) ) |
27 |
18 26
|
sylib |
|- ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = G /\ ( H ` 0 ) = P ) ) |