| Step | Hyp | Ref | Expression | 
						
							| 1 |  | biimp | ⊢ ( ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  →  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 ) ) | 
						
							| 2 |  | iitop | ⊢ II  ∈  Top | 
						
							| 3 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 4 | 3 | neii1 | ⊢ ( ( II  ∈  Top  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  𝑢  ⊆  ( 0 [,] 1 ) ) | 
						
							| 5 | 2 4 | mpan | ⊢ ( 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } )  →  𝑢  ⊆  ( 0 [,] 1 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  𝑢  ⊆  ( 0 [,] 1 ) ) | 
						
							| 7 |  | xpss1 | ⊢ ( 𝑢  ⊆  ( 0 [,] 1 )  →  ( 𝑢  ×  { 𝑥 } )  ⊆  ( ( 0 [,] 1 )  ×  { 𝑥 } ) ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  ( 𝑢  ×  { 𝑥 } )  ⊆  ( ( 0 [,] 1 )  ×  { 𝑥 } ) ) | 
						
							| 9 |  | simpl | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀 ) | 
						
							| 10 | 8 9 | sstrd | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀 ) | 
						
							| 11 |  | ssnei | ⊢ ( ( II  ∈  Top  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  { 𝑦 }  ⊆  𝑢 ) | 
						
							| 12 | 2 11 | mpan | ⊢ ( 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } )  →  { 𝑦 }  ⊆  𝑢 ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  { 𝑦 }  ⊆  𝑢 ) | 
						
							| 14 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 15 | 14 | snss | ⊢ ( 𝑦  ∈  𝑢  ↔  { 𝑦 }  ⊆  𝑢 ) | 
						
							| 16 | 13 15 | sylibr | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  𝑦  ∈  𝑢 ) | 
						
							| 17 |  | vsnid | ⊢ 𝑡  ∈  { 𝑡 } | 
						
							| 18 |  | opelxpi | ⊢ ( ( 𝑦  ∈  𝑢  ∧  𝑡  ∈  { 𝑡 } )  →  〈 𝑦 ,  𝑡 〉  ∈  ( 𝑢  ×  { 𝑡 } ) ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  〈 𝑦 ,  𝑡 〉  ∈  ( 𝑢  ×  { 𝑡 } ) ) | 
						
							| 20 |  | ssel | ⊢ ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  →  ( 〈 𝑦 ,  𝑡 〉  ∈  ( 𝑢  ×  { 𝑡 } )  →  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 21 | 19 20 | syl5com | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  ( ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀  →  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 22 | 10 21 | embantd | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  ( ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  →  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 23 | 1 22 | syl5 | ⊢ ( ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  ∧  𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) )  →  ( ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 24 | 23 | rexlimdva | ⊢ ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  →  ( ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 25 | 24 | ralimdv | ⊢ ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  →  ( ∀ 𝑦  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ∀ 𝑦  ∈  ( 0 [,] 1 ) 〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 26 | 25 | com12 | ⊢ ( ∀ 𝑦  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  →  ∀ 𝑦  ∈  ( 0 [,] 1 ) 〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 27 |  | dfss3 | ⊢ ( ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀  ↔  ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  { 𝑡 } ) 𝑧  ∈  𝑀 ) | 
						
							| 28 |  | eleq1 | ⊢ ( 𝑧  =  〈 𝑦 ,  𝑢 〉  →  ( 𝑧  ∈  𝑀  ↔  〈 𝑦 ,  𝑢 〉  ∈  𝑀 ) ) | 
						
							| 29 | 28 | ralxp | ⊢ ( ∀ 𝑧  ∈  ( ( 0 [,] 1 )  ×  { 𝑡 } ) 𝑧  ∈  𝑀  ↔  ∀ 𝑦  ∈  ( 0 [,] 1 ) ∀ 𝑢  ∈  { 𝑡 } 〈 𝑦 ,  𝑢 〉  ∈  𝑀 ) | 
						
							| 30 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 31 |  | opeq2 | ⊢ ( 𝑢  =  𝑡  →  〈 𝑦 ,  𝑢 〉  =  〈 𝑦 ,  𝑡 〉 ) | 
						
							| 32 | 31 | eleq1d | ⊢ ( 𝑢  =  𝑡  →  ( 〈 𝑦 ,  𝑢 〉  ∈  𝑀  ↔  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) ) | 
						
							| 33 | 30 32 | ralsn | ⊢ ( ∀ 𝑢  ∈  { 𝑡 } 〈 𝑦 ,  𝑢 〉  ∈  𝑀  ↔  〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) | 
						
							| 34 | 33 | ralbii | ⊢ ( ∀ 𝑦  ∈  ( 0 [,] 1 ) ∀ 𝑢  ∈  { 𝑡 } 〈 𝑦 ,  𝑢 〉  ∈  𝑀  ↔  ∀ 𝑦  ∈  ( 0 [,] 1 ) 〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) | 
						
							| 35 | 27 29 34 | 3bitri | ⊢ ( ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀  ↔  ∀ 𝑦  ∈  ( 0 [,] 1 ) 〈 𝑦 ,  𝑡 〉  ∈  𝑀 ) | 
						
							| 36 | 26 35 | imbitrrdi | ⊢ ( ∀ 𝑦  ∈  ( 0 [,] 1 ) ∃ 𝑢  ∈  ( ( nei ‘ II ) ‘ { 𝑦 } ) ( ( 𝑢  ×  { 𝑥 } )  ⊆  𝑀  ↔  ( 𝑢  ×  { 𝑡 } )  ⊆  𝑀 )  →  ( ( ( 0 [,] 1 )  ×  { 𝑥 } )  ⊆  𝑀  →  ( ( 0 [,] 1 )  ×  { 𝑡 } )  ⊆  𝑀 ) ) |