Metamath Proof Explorer


Theorem cvmlift2lem1

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Assertion cvmlift2lem1 y01uneiIIyu×xMu×tM01×xM01×tM

Proof

Step Hyp Ref Expression
1 biimp u×xMu×tMu×xMu×tM
2 iitop IITop
3 iiuni 01=II
4 3 neii1 IITopuneiIIyu01
5 2 4 mpan uneiIIyu01
6 5 adantl 01×xMuneiIIyu01
7 xpss1 u01u×x01×x
8 6 7 syl 01×xMuneiIIyu×x01×x
9 simpl 01×xMuneiIIy01×xM
10 8 9 sstrd 01×xMuneiIIyu×xM
11 ssnei IITopuneiIIyyu
12 2 11 mpan uneiIIyyu
13 12 adantl 01×xMuneiIIyyu
14 vex yV
15 14 snss yuyu
16 13 15 sylibr 01×xMuneiIIyyu
17 vsnid tt
18 opelxpi yuttytu×t
19 16 17 18 sylancl 01×xMuneiIIyytu×t
20 ssel u×tMytu×tytM
21 19 20 syl5com 01×xMuneiIIyu×tMytM
22 10 21 embantd 01×xMuneiIIyu×xMu×tMytM
23 1 22 syl5 01×xMuneiIIyu×xMu×tMytM
24 23 rexlimdva 01×xMuneiIIyu×xMu×tMytM
25 24 ralimdv 01×xMy01uneiIIyu×xMu×tMy01ytM
26 25 com12 y01uneiIIyu×xMu×tM01×xMy01ytM
27 dfss3 01×tMz01×tzM
28 eleq1 z=yuzMyuM
29 28 ralxp z01×tzMy01utyuM
30 vex tV
31 opeq2 u=tyu=yt
32 31 eleq1d u=tyuMytM
33 30 32 ralsn utyuMytM
34 33 ralbii y01utyuMy01ytM
35 27 29 34 3bitri 01×tMy01ytM
36 26 35 syl6ibr y01uneiIIyu×xMu×tM01×xM01×tM