Metamath Proof Explorer


Theorem cvmlift2

Description: A two-dimensional version of cvmlift . There is a unique lift of functions on the unit square II tX II which commutes with the covering map. (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
Assertion cvmlift2 φ∃!fII×tIICnCFf=G0f0=P

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 coeq2 h=gFh=Fg
7 oveq1 w=zwG0=zG0
8 7 cbvmptv w01wG0=z01zG0
9 8 a1i h=gw01wG0=z01zG0
10 6 9 eqeq12d h=gFh=w01wG0Fg=z01zG0
11 fveq1 h=gh0=g0
12 11 eqeq1d h=gh0=Pg0=P
13 10 12 anbi12d h=gFh=w01wG0h0=PFg=z01zG0g0=P
14 13 cbvriotavw ιhIICnC|Fh=w01wG0h0=P=ιgIICnC|Fg=z01zG0g0=P
15 coeq2 k=gFk=Fg
16 oveq2 w=zuGw=uGz
17 16 cbvmptv w01uGw=z01uGz
18 17 a1i k=gw01uGw=z01uGz
19 15 18 eqeq12d k=gFk=w01uGwFg=z01uGz
20 fveq1 k=gk0=g0
21 20 eqeq1d k=gk0=ιhIICnC|Fh=w01wG0h0=Pug0=ιhIICnC|Fh=w01wG0h0=Pu
22 19 21 anbi12d k=gFk=w01uGwk0=ιhIICnC|Fh=w01wG0h0=PuFg=z01uGzg0=ιhIICnC|Fh=w01wG0h0=Pu
23 22 cbvriotavw ιkIICnC|Fk=w01uGwk0=ιhIICnC|Fh=w01wG0h0=Pu=ιgIICnC|Fg=z01uGzg0=ιhIICnC|Fh=w01wG0h0=Pu
24 oveq1 u=xuGz=xGz
25 24 mpteq2dv u=xz01uGz=z01xGz
26 25 eqeq2d u=xFg=z01uGzFg=z01xGz
27 fveq2 u=xιhIICnC|Fh=w01wG0h0=Pu=ιhIICnC|Fh=w01wG0h0=Px
28 27 eqeq2d u=xg0=ιhIICnC|Fh=w01wG0h0=Pug0=ιhIICnC|Fh=w01wG0h0=Px
29 26 28 anbi12d u=xFg=z01uGzg0=ιhIICnC|Fh=w01wG0h0=PuFg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Px
30 29 riotabidv u=xιgIICnC|Fg=z01uGzg0=ιhIICnC|Fh=w01wG0h0=Pu=ιgIICnC|Fg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Px
31 23 30 eqtrid u=xιkIICnC|Fk=w01uGwk0=ιhIICnC|Fh=w01wG0h0=Pu=ιgIICnC|Fg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Px
32 31 fveq1d u=xιkIICnC|Fk=w01uGwk0=ιhIICnC|Fh=w01wG0h0=Puv=ιgIICnC|Fg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Pxv
33 fveq2 v=yιgIICnC|Fg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Pxv=ιgIICnC|Fg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Pxy
34 32 33 cbvmpov u01,v01ιkIICnC|Fk=w01uGwk0=ιhIICnC|Fh=w01wG0h0=Puv=x01,y01ιgIICnC|Fg=z01xGzg0=ιhIICnC|Fh=w01wG0h0=Pxy
35 1 2 3 4 5 14 34 cvmlift2lem13 φ∃!fII×tIICnCFf=G0f0=P