| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
|- B = U. C |
| 2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
| 4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
| 5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
| 6 |
|
coeq2 |
|- ( h = g -> ( F o. h ) = ( F o. g ) ) |
| 7 |
|
oveq1 |
|- ( w = z -> ( w G 0 ) = ( z G 0 ) ) |
| 8 |
7
|
cbvmptv |
|- ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) |
| 9 |
8
|
a1i |
|- ( h = g -> ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) |
| 10 |
6 9
|
eqeq12d |
|- ( h = g -> ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) ) |
| 11 |
|
fveq1 |
|- ( h = g -> ( h ` 0 ) = ( g ` 0 ) ) |
| 12 |
11
|
eqeq1d |
|- ( h = g -> ( ( h ` 0 ) = P <-> ( g ` 0 ) = P ) ) |
| 13 |
10 12
|
anbi12d |
|- ( h = g -> ( ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( g ` 0 ) = P ) ) ) |
| 14 |
13
|
cbvriotavw |
|- ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( g ` 0 ) = P ) ) |
| 15 |
|
coeq2 |
|- ( k = g -> ( F o. k ) = ( F o. g ) ) |
| 16 |
|
oveq2 |
|- ( w = z -> ( u G w ) = ( u G z ) ) |
| 17 |
16
|
cbvmptv |
|- ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) |
| 18 |
17
|
a1i |
|- ( k = g -> ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) ) |
| 19 |
15 18
|
eqeq12d |
|- ( k = g -> ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) ) ) |
| 20 |
|
fveq1 |
|- ( k = g -> ( k ` 0 ) = ( g ` 0 ) ) |
| 21 |
20
|
eqeq1d |
|- ( k = g -> ( ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) <-> ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) |
| 22 |
19 21
|
anbi12d |
|- ( k = g -> ( ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ) |
| 23 |
22
|
cbvriotavw |
|- ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) |
| 24 |
|
oveq1 |
|- ( u = x -> ( u G z ) = ( x G z ) ) |
| 25 |
24
|
mpteq2dv |
|- ( u = x -> ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) |
| 26 |
25
|
eqeq2d |
|- ( u = x -> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) ) |
| 27 |
|
fveq2 |
|- ( u = x -> ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) |
| 28 |
27
|
eqeq2d |
|- ( u = x -> ( ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) <-> ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) |
| 29 |
26 28
|
anbi12d |
|- ( u = x -> ( ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) |
| 30 |
29
|
riotabidv |
|- ( u = x -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) |
| 31 |
23 30
|
eqtrid |
|- ( u = x -> ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) |
| 32 |
31
|
fveq1d |
|- ( u = x -> ( ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ` v ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` v ) ) |
| 33 |
|
fveq2 |
|- ( v = y -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` v ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` y ) ) |
| 34 |
32 33
|
cbvmpov |
|- ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ` v ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` y ) ) |
| 35 |
1 2 3 4 5 14 34
|
cvmlift2lem13 |
|- ( ph -> E! f e. ( ( II tX II ) Cn C ) ( ( F o. f ) = G /\ ( 0 f 0 ) = P ) ) |