Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
|- B = U. C |
2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
6 |
|
coeq2 |
|- ( h = g -> ( F o. h ) = ( F o. g ) ) |
7 |
|
oveq1 |
|- ( w = z -> ( w G 0 ) = ( z G 0 ) ) |
8 |
7
|
cbvmptv |
|- ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) |
9 |
8
|
a1i |
|- ( h = g -> ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) |
10 |
6 9
|
eqeq12d |
|- ( h = g -> ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) ) |
11 |
|
fveq1 |
|- ( h = g -> ( h ` 0 ) = ( g ` 0 ) ) |
12 |
11
|
eqeq1d |
|- ( h = g -> ( ( h ` 0 ) = P <-> ( g ` 0 ) = P ) ) |
13 |
10 12
|
anbi12d |
|- ( h = g -> ( ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( g ` 0 ) = P ) ) ) |
14 |
13
|
cbvriotavw |
|- ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( g ` 0 ) = P ) ) |
15 |
|
coeq2 |
|- ( k = g -> ( F o. k ) = ( F o. g ) ) |
16 |
|
oveq2 |
|- ( w = z -> ( u G w ) = ( u G z ) ) |
17 |
16
|
cbvmptv |
|- ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) |
18 |
17
|
a1i |
|- ( k = g -> ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) ) |
19 |
15 18
|
eqeq12d |
|- ( k = g -> ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) ) ) |
20 |
|
fveq1 |
|- ( k = g -> ( k ` 0 ) = ( g ` 0 ) ) |
21 |
20
|
eqeq1d |
|- ( k = g -> ( ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) <-> ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) |
22 |
19 21
|
anbi12d |
|- ( k = g -> ( ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ) |
23 |
22
|
cbvriotavw |
|- ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) |
24 |
|
oveq1 |
|- ( u = x -> ( u G z ) = ( x G z ) ) |
25 |
24
|
mpteq2dv |
|- ( u = x -> ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) |
26 |
25
|
eqeq2d |
|- ( u = x -> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) ) |
27 |
|
fveq2 |
|- ( u = x -> ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) |
28 |
27
|
eqeq2d |
|- ( u = x -> ( ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) <-> ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) |
29 |
26 28
|
anbi12d |
|- ( u = x -> ( ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) |
30 |
29
|
riotabidv |
|- ( u = x -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) |
31 |
23 30
|
syl5eq |
|- ( u = x -> ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) |
32 |
31
|
fveq1d |
|- ( u = x -> ( ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ` v ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` v ) ) |
33 |
|
fveq2 |
|- ( v = y -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` v ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` y ) ) |
34 |
32 33
|
cbvmpov |
|- ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ` v ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` y ) ) |
35 |
1 2 3 4 5 14 34
|
cvmlift2lem13 |
|- ( ph -> E! f e. ( ( II tX II ) Cn C ) ( ( F o. f ) = G /\ ( 0 f 0 ) = P ) ) |