| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | coeq2 |  |-  ( h = g -> ( F o. h ) = ( F o. g ) ) | 
						
							| 7 |  | oveq1 |  |-  ( w = z -> ( w G 0 ) = ( z G 0 ) ) | 
						
							| 8 | 7 | cbvmptv |  |-  ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) | 
						
							| 9 | 8 | a1i |  |-  ( h = g -> ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) | 
						
							| 10 | 6 9 | eqeq12d |  |-  ( h = g -> ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) ) | 
						
							| 11 |  | fveq1 |  |-  ( h = g -> ( h ` 0 ) = ( g ` 0 ) ) | 
						
							| 12 | 11 | eqeq1d |  |-  ( h = g -> ( ( h ` 0 ) = P <-> ( g ` 0 ) = P ) ) | 
						
							| 13 | 10 12 | anbi12d |  |-  ( h = g -> ( ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 14 | 13 | cbvriotavw |  |-  ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( g ` 0 ) = P ) ) | 
						
							| 15 |  | coeq2 |  |-  ( k = g -> ( F o. k ) = ( F o. g ) ) | 
						
							| 16 |  | oveq2 |  |-  ( w = z -> ( u G w ) = ( u G z ) ) | 
						
							| 17 | 16 | cbvmptv |  |-  ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) | 
						
							| 18 | 17 | a1i |  |-  ( k = g -> ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) ) | 
						
							| 19 | 15 18 | eqeq12d |  |-  ( k = g -> ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) ) ) | 
						
							| 20 |  | fveq1 |  |-  ( k = g -> ( k ` 0 ) = ( g ` 0 ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( k = g -> ( ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) <-> ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) | 
						
							| 22 | 19 21 | anbi12d |  |-  ( k = g -> ( ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ) | 
						
							| 23 | 22 | cbvriotavw |  |-  ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) | 
						
							| 24 |  | oveq1 |  |-  ( u = x -> ( u G z ) = ( x G z ) ) | 
						
							| 25 | 24 | mpteq2dv |  |-  ( u = x -> ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( u = x -> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) <-> ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) ) | 
						
							| 27 |  | fveq2 |  |-  ( u = x -> ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) | 
						
							| 28 | 27 | eqeq2d |  |-  ( u = x -> ( ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) <-> ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) | 
						
							| 29 | 26 28 | anbi12d |  |-  ( u = x -> ( ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) <-> ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) | 
						
							| 30 | 29 | riotabidv |  |-  ( u = x -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( u G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) | 
						
							| 31 | 23 30 | eqtrid |  |-  ( u = x -> ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ) | 
						
							| 32 | 31 | fveq1d |  |-  ( u = x -> ( ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ` v ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` v ) ) | 
						
							| 33 |  | fveq2 |  |-  ( v = y -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` v ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` y ) ) | 
						
							| 34 | 32 33 | cbvmpov |  |-  ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( ( iota_ k e. ( II Cn C ) ( ( F o. k ) = ( w e. ( 0 [,] 1 ) |-> ( u G w ) ) /\ ( k ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` u ) ) ) ` v ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( g ` 0 ) = ( ( iota_ h e. ( II Cn C ) ( ( F o. h ) = ( w e. ( 0 [,] 1 ) |-> ( w G 0 ) ) /\ ( h ` 0 ) = P ) ) ` x ) ) ) ` y ) ) | 
						
							| 35 | 1 2 3 4 5 14 34 | cvmlift2lem13 |  |-  ( ph -> E! f e. ( ( II tX II ) Cn C ) ( ( F o. f ) = G /\ ( 0 f 0 ) = P ) ) |