| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
|- B = U. C |
| 2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
| 4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
| 5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
| 6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
| 7 |
|
cvmlift2.k |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) |
| 8 |
|
fveq2 |
|- ( a = z -> ( ( ( II tX II ) CnP C ) ` a ) = ( ( ( II tX II ) CnP C ) ` z ) ) |
| 9 |
8
|
eleq2d |
|- ( a = z -> ( K e. ( ( ( II tX II ) CnP C ) ` a ) <-> K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) |
| 10 |
9
|
cbvrabv |
|- { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } = { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } |
| 11 |
|
sneq |
|- ( z = b -> { z } = { b } ) |
| 12 |
11
|
xpeq2d |
|- ( z = b -> ( ( 0 [,] 1 ) X. { z } ) = ( ( 0 [,] 1 ) X. { b } ) ) |
| 13 |
12
|
sseq1d |
|- ( z = b -> ( ( ( 0 [,] 1 ) X. { z } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( ( 0 [,] 1 ) X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) |
| 14 |
13
|
cbvrabv |
|- { z e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { z } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } } = { b e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } } |
| 15 |
|
simpr |
|- ( ( c = r /\ d = t ) -> d = t ) |
| 16 |
15
|
eleq1d |
|- ( ( c = r /\ d = t ) -> ( d e. ( 0 [,] 1 ) <-> t e. ( 0 [,] 1 ) ) ) |
| 17 |
|
xpeq1 |
|- ( v = u -> ( v X. { b } ) = ( u X. { b } ) ) |
| 18 |
17
|
sseq1d |
|- ( v = u -> ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) |
| 19 |
|
xpeq1 |
|- ( v = u -> ( v X. { d } ) = ( u X. { d } ) ) |
| 20 |
19
|
sseq1d |
|- ( v = u -> ( ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) |
| 21 |
18 20
|
bibi12d |
|- ( v = u -> ( ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) |
| 22 |
21
|
cbvrexvw |
|- ( E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> E. u e. ( ( nei ` II ) ` { c } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) |
| 23 |
|
simpl |
|- ( ( c = r /\ d = t ) -> c = r ) |
| 24 |
23
|
sneqd |
|- ( ( c = r /\ d = t ) -> { c } = { r } ) |
| 25 |
24
|
fveq2d |
|- ( ( c = r /\ d = t ) -> ( ( nei ` II ) ` { c } ) = ( ( nei ` II ) ` { r } ) ) |
| 26 |
15
|
sneqd |
|- ( ( c = r /\ d = t ) -> { d } = { t } ) |
| 27 |
26
|
xpeq2d |
|- ( ( c = r /\ d = t ) -> ( u X. { d } ) = ( u X. { t } ) ) |
| 28 |
27
|
sseq1d |
|- ( ( c = r /\ d = t ) -> ( ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) |
| 29 |
28
|
bibi2d |
|- ( ( c = r /\ d = t ) -> ( ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) |
| 30 |
25 29
|
rexeqbidv |
|- ( ( c = r /\ d = t ) -> ( E. u e. ( ( nei ` II ) ` { c } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) |
| 31 |
22 30
|
bitrid |
|- ( ( c = r /\ d = t ) -> ( E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) |
| 32 |
16 31
|
anbi12d |
|- ( ( c = r /\ d = t ) -> ( ( d e. ( 0 [,] 1 ) /\ E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) <-> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) ) |
| 33 |
32
|
cbvopabv |
|- { <. c , d >. | ( d e. ( 0 [,] 1 ) /\ E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) } = { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) } |
| 34 |
1 2 3 4 5 6 7 10 14 33
|
cvmlift2lem12 |
|- ( ph -> K e. ( ( II tX II ) Cn C ) ) |
| 35 |
1 2 3 4 5 6 7
|
cvmlift2lem7 |
|- ( ph -> ( F o. K ) = G ) |
| 36 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 37 |
1 2 3 4 5 6 7
|
cvmlift2lem8 |
|- ( ( ph /\ 0 e. ( 0 [,] 1 ) ) -> ( 0 K 0 ) = ( H ` 0 ) ) |
| 38 |
36 37
|
mpan2 |
|- ( ph -> ( 0 K 0 ) = ( H ` 0 ) ) |
| 39 |
1 2 3 4 5 6
|
cvmlift2lem2 |
|- ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) |
| 40 |
39
|
simp3d |
|- ( ph -> ( H ` 0 ) = P ) |
| 41 |
38 40
|
eqtrd |
|- ( ph -> ( 0 K 0 ) = P ) |
| 42 |
|
coeq2 |
|- ( g = K -> ( F o. g ) = ( F o. K ) ) |
| 43 |
42
|
eqeq1d |
|- ( g = K -> ( ( F o. g ) = G <-> ( F o. K ) = G ) ) |
| 44 |
|
oveq |
|- ( g = K -> ( 0 g 0 ) = ( 0 K 0 ) ) |
| 45 |
44
|
eqeq1d |
|- ( g = K -> ( ( 0 g 0 ) = P <-> ( 0 K 0 ) = P ) ) |
| 46 |
43 45
|
anbi12d |
|- ( g = K -> ( ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> ( ( F o. K ) = G /\ ( 0 K 0 ) = P ) ) ) |
| 47 |
46
|
rspcev |
|- ( ( K e. ( ( II tX II ) Cn C ) /\ ( ( F o. K ) = G /\ ( 0 K 0 ) = P ) ) -> E. g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) |
| 48 |
34 35 41 47
|
syl12anc |
|- ( ph -> E. g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) |
| 49 |
|
iitop |
|- II e. Top |
| 50 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 51 |
49 49 50 50
|
txunii |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) |
| 52 |
|
iiconn |
|- II e. Conn |
| 53 |
|
txconn |
|- ( ( II e. Conn /\ II e. Conn ) -> ( II tX II ) e. Conn ) |
| 54 |
52 52 53
|
mp2an |
|- ( II tX II ) e. Conn |
| 55 |
54
|
a1i |
|- ( ph -> ( II tX II ) e. Conn ) |
| 56 |
|
iinllyconn |
|- II e. N-Locally Conn |
| 57 |
|
txconn |
|- ( ( x e. Conn /\ y e. Conn ) -> ( x tX y ) e. Conn ) |
| 58 |
57
|
txnlly |
|- ( ( II e. N-Locally Conn /\ II e. N-Locally Conn ) -> ( II tX II ) e. N-Locally Conn ) |
| 59 |
56 56 58
|
mp2an |
|- ( II tX II ) e. N-Locally Conn |
| 60 |
59
|
a1i |
|- ( ph -> ( II tX II ) e. N-Locally Conn ) |
| 61 |
|
opelxpi |
|- ( ( 0 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> <. 0 , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 62 |
36 36 61
|
mp2an |
|- <. 0 , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) |
| 63 |
62
|
a1i |
|- ( ph -> <. 0 , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
| 64 |
|
df-ov |
|- ( 0 G 0 ) = ( G ` <. 0 , 0 >. ) |
| 65 |
5 64
|
eqtrdi |
|- ( ph -> ( F ` P ) = ( G ` <. 0 , 0 >. ) ) |
| 66 |
1 51 2 55 60 63 3 4 65
|
cvmliftmo |
|- ( ph -> E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( g ` <. 0 , 0 >. ) = P ) ) |
| 67 |
|
df-ov |
|- ( 0 g 0 ) = ( g ` <. 0 , 0 >. ) |
| 68 |
67
|
eqeq1i |
|- ( ( 0 g 0 ) = P <-> ( g ` <. 0 , 0 >. ) = P ) |
| 69 |
68
|
anbi2i |
|- ( ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> ( ( F o. g ) = G /\ ( g ` <. 0 , 0 >. ) = P ) ) |
| 70 |
69
|
rmobii |
|- ( E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( g ` <. 0 , 0 >. ) = P ) ) |
| 71 |
66 70
|
sylibr |
|- ( ph -> E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) |
| 72 |
|
reu5 |
|- ( E! g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> ( E. g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) /\ E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) ) |
| 73 |
48 71 72
|
sylanbrc |
|- ( ph -> E! g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) |