| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 |  | fveq2 |  |-  ( a = z -> ( ( ( II tX II ) CnP C ) ` a ) = ( ( ( II tX II ) CnP C ) ` z ) ) | 
						
							| 9 | 8 | eleq2d |  |-  ( a = z -> ( K e. ( ( ( II tX II ) CnP C ) ` a ) <-> K e. ( ( ( II tX II ) CnP C ) ` z ) ) ) | 
						
							| 10 | 9 | cbvrabv |  |-  { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } = { z e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` z ) } | 
						
							| 11 |  | sneq |  |-  ( z = b -> { z } = { b } ) | 
						
							| 12 | 11 | xpeq2d |  |-  ( z = b -> ( ( 0 [,] 1 ) X. { z } ) = ( ( 0 [,] 1 ) X. { b } ) ) | 
						
							| 13 | 12 | sseq1d |  |-  ( z = b -> ( ( ( 0 [,] 1 ) X. { z } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( ( 0 [,] 1 ) X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) | 
						
							| 14 | 13 | cbvrabv |  |-  { z e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { z } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } } = { b e. ( 0 [,] 1 ) | ( ( 0 [,] 1 ) X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } } | 
						
							| 15 |  | simpr |  |-  ( ( c = r /\ d = t ) -> d = t ) | 
						
							| 16 | 15 | eleq1d |  |-  ( ( c = r /\ d = t ) -> ( d e. ( 0 [,] 1 ) <-> t e. ( 0 [,] 1 ) ) ) | 
						
							| 17 |  | xpeq1 |  |-  ( v = u -> ( v X. { b } ) = ( u X. { b } ) ) | 
						
							| 18 | 17 | sseq1d |  |-  ( v = u -> ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) | 
						
							| 19 |  | xpeq1 |  |-  ( v = u -> ( v X. { d } ) = ( u X. { d } ) ) | 
						
							| 20 | 19 | sseq1d |  |-  ( v = u -> ( ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) | 
						
							| 21 | 18 20 | bibi12d |  |-  ( v = u -> ( ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) | 
						
							| 22 | 21 | cbvrexvw |  |-  ( E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> E. u e. ( ( nei ` II ) ` { c } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) | 
						
							| 23 |  | simpl |  |-  ( ( c = r /\ d = t ) -> c = r ) | 
						
							| 24 | 23 | sneqd |  |-  ( ( c = r /\ d = t ) -> { c } = { r } ) | 
						
							| 25 | 24 | fveq2d |  |-  ( ( c = r /\ d = t ) -> ( ( nei ` II ) ` { c } ) = ( ( nei ` II ) ` { r } ) ) | 
						
							| 26 | 15 | sneqd |  |-  ( ( c = r /\ d = t ) -> { d } = { t } ) | 
						
							| 27 | 26 | xpeq2d |  |-  ( ( c = r /\ d = t ) -> ( u X. { d } ) = ( u X. { t } ) ) | 
						
							| 28 | 27 | sseq1d |  |-  ( ( c = r /\ d = t ) -> ( ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) | 
						
							| 29 | 28 | bibi2d |  |-  ( ( c = r /\ d = t ) -> ( ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) | 
						
							| 30 | 25 29 | rexeqbidv |  |-  ( ( c = r /\ d = t ) -> ( E. u e. ( ( nei ` II ) ` { c } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) | 
						
							| 31 | 22 30 | bitrid |  |-  ( ( c = r /\ d = t ) -> ( E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) <-> E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) | 
						
							| 32 | 16 31 | anbi12d |  |-  ( ( c = r /\ d = t ) -> ( ( d e. ( 0 [,] 1 ) /\ E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) <-> ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) ) ) | 
						
							| 33 | 32 | cbvopabv |  |-  { <. c , d >. | ( d e. ( 0 [,] 1 ) /\ E. v e. ( ( nei ` II ) ` { c } ) ( ( v X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( v X. { d } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) } = { <. r , t >. | ( t e. ( 0 [,] 1 ) /\ E. u e. ( ( nei ` II ) ` { r } ) ( ( u X. { b } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } <-> ( u X. { t } ) C_ { a e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | K e. ( ( ( II tX II ) CnP C ) ` a ) } ) ) } | 
						
							| 34 | 1 2 3 4 5 6 7 10 14 33 | cvmlift2lem12 |  |-  ( ph -> K e. ( ( II tX II ) Cn C ) ) | 
						
							| 35 | 1 2 3 4 5 6 7 | cvmlift2lem7 |  |-  ( ph -> ( F o. K ) = G ) | 
						
							| 36 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 37 | 1 2 3 4 5 6 7 | cvmlift2lem8 |  |-  ( ( ph /\ 0 e. ( 0 [,] 1 ) ) -> ( 0 K 0 ) = ( H ` 0 ) ) | 
						
							| 38 | 36 37 | mpan2 |  |-  ( ph -> ( 0 K 0 ) = ( H ` 0 ) ) | 
						
							| 39 | 1 2 3 4 5 6 | cvmlift2lem2 |  |-  ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) | 
						
							| 40 | 39 | simp3d |  |-  ( ph -> ( H ` 0 ) = P ) | 
						
							| 41 | 38 40 | eqtrd |  |-  ( ph -> ( 0 K 0 ) = P ) | 
						
							| 42 |  | coeq2 |  |-  ( g = K -> ( F o. g ) = ( F o. K ) ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( g = K -> ( ( F o. g ) = G <-> ( F o. K ) = G ) ) | 
						
							| 44 |  | oveq |  |-  ( g = K -> ( 0 g 0 ) = ( 0 K 0 ) ) | 
						
							| 45 | 44 | eqeq1d |  |-  ( g = K -> ( ( 0 g 0 ) = P <-> ( 0 K 0 ) = P ) ) | 
						
							| 46 | 43 45 | anbi12d |  |-  ( g = K -> ( ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> ( ( F o. K ) = G /\ ( 0 K 0 ) = P ) ) ) | 
						
							| 47 | 46 | rspcev |  |-  ( ( K e. ( ( II tX II ) Cn C ) /\ ( ( F o. K ) = G /\ ( 0 K 0 ) = P ) ) -> E. g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) | 
						
							| 48 | 34 35 41 47 | syl12anc |  |-  ( ph -> E. g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) | 
						
							| 49 |  | iitop |  |-  II e. Top | 
						
							| 50 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 51 | 49 49 50 50 | txunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 52 |  | iiconn |  |-  II e. Conn | 
						
							| 53 |  | txconn |  |-  ( ( II e. Conn /\ II e. Conn ) -> ( II tX II ) e. Conn ) | 
						
							| 54 | 52 52 53 | mp2an |  |-  ( II tX II ) e. Conn | 
						
							| 55 | 54 | a1i |  |-  ( ph -> ( II tX II ) e. Conn ) | 
						
							| 56 |  | iinllyconn |  |-  II e. N-Locally Conn | 
						
							| 57 |  | txconn |  |-  ( ( x e. Conn /\ y e. Conn ) -> ( x tX y ) e. Conn ) | 
						
							| 58 | 57 | txnlly |  |-  ( ( II e. N-Locally Conn /\ II e. N-Locally Conn ) -> ( II tX II ) e. N-Locally Conn ) | 
						
							| 59 | 56 56 58 | mp2an |  |-  ( II tX II ) e. N-Locally Conn | 
						
							| 60 | 59 | a1i |  |-  ( ph -> ( II tX II ) e. N-Locally Conn ) | 
						
							| 61 |  | opelxpi |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> <. 0 , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 62 | 36 36 61 | mp2an |  |-  <. 0 , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) | 
						
							| 63 | 62 | a1i |  |-  ( ph -> <. 0 , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 64 |  | df-ov |  |-  ( 0 G 0 ) = ( G ` <. 0 , 0 >. ) | 
						
							| 65 | 5 64 | eqtrdi |  |-  ( ph -> ( F ` P ) = ( G ` <. 0 , 0 >. ) ) | 
						
							| 66 | 1 51 2 55 60 63 3 4 65 | cvmliftmo |  |-  ( ph -> E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( g ` <. 0 , 0 >. ) = P ) ) | 
						
							| 67 |  | df-ov |  |-  ( 0 g 0 ) = ( g ` <. 0 , 0 >. ) | 
						
							| 68 | 67 | eqeq1i |  |-  ( ( 0 g 0 ) = P <-> ( g ` <. 0 , 0 >. ) = P ) | 
						
							| 69 | 68 | anbi2i |  |-  ( ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> ( ( F o. g ) = G /\ ( g ` <. 0 , 0 >. ) = P ) ) | 
						
							| 70 | 69 | rmobii |  |-  ( E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( g ` <. 0 , 0 >. ) = P ) ) | 
						
							| 71 | 66 70 | sylibr |  |-  ( ph -> E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) | 
						
							| 72 |  | reu5 |  |-  ( E! g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) <-> ( E. g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) /\ E* g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) ) | 
						
							| 73 | 48 71 72 | sylanbrc |  |-  ( ph -> E! g e. ( ( II tX II ) Cn C ) ( ( F o. g ) = G /\ ( 0 g 0 ) = P ) ) |