| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
|- B = U. C |
| 2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
| 4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
| 5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
| 6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
| 7 |
|
cvmlift2.k |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) |
| 8 |
|
simpr |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) |
| 9 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 10 |
1 2 3 4 5 6 7
|
cvmlift2lem4 |
|- ( ( X e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( X K 0 ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` 0 ) ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( X K 0 ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` 0 ) ) |
| 12 |
|
eqid |
|- ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) |
| 13 |
1 2 3 4 5 6 12
|
cvmlift2lem3 |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` 0 ) = ( H ` X ) ) ) |
| 14 |
13
|
simp3d |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` 0 ) = ( H ` X ) ) |
| 15 |
11 14
|
eqtrd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( X K 0 ) = ( H ` X ) ) |