Metamath Proof Explorer


Theorem cvmlift2lem4

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b
|- B = U. C
cvmlift2.f
|- ( ph -> F e. ( C CovMap J ) )
cvmlift2.g
|- ( ph -> G e. ( ( II tX II ) Cn J ) )
cvmlift2.p
|- ( ph -> P e. B )
cvmlift2.i
|- ( ph -> ( F ` P ) = ( 0 G 0 ) )
cvmlift2.h
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) )
cvmlift2.k
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) )
Assertion cvmlift2lem4
|- ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( X K Y ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` Y ) )

Proof

Step Hyp Ref Expression
1 cvmlift2.b
 |-  B = U. C
2 cvmlift2.f
 |-  ( ph -> F e. ( C CovMap J ) )
3 cvmlift2.g
 |-  ( ph -> G e. ( ( II tX II ) Cn J ) )
4 cvmlift2.p
 |-  ( ph -> P e. B )
5 cvmlift2.i
 |-  ( ph -> ( F ` P ) = ( 0 G 0 ) )
6 cvmlift2.h
 |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) )
7 cvmlift2.k
 |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) )
8 oveq1
 |-  ( x = X -> ( x G z ) = ( X G z ) )
9 8 mpteq2dv
 |-  ( x = X -> ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) )
10 9 eqeq2d
 |-  ( x = X -> ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) <-> ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ) )
11 fveq2
 |-  ( x = X -> ( H ` x ) = ( H ` X ) )
12 11 eqeq2d
 |-  ( x = X -> ( ( f ` 0 ) = ( H ` x ) <-> ( f ` 0 ) = ( H ` X ) ) )
13 10 12 anbi12d
 |-  ( x = X -> ( ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) <-> ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) )
14 13 riotabidv
 |-  ( x = X -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) )
15 14 fveq1d
 |-  ( x = X -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` y ) )
16 fveq2
 |-  ( y = Y -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` y ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` Y ) )
17 fvex
 |-  ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` Y ) e. _V
18 15 16 7 17 ovmpo
 |-  ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> ( X K Y ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` Y ) )