Metamath Proof Explorer


Theorem cvmlift2lem4

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b 𝐵 = 𝐶
cvmlift2.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmlift2.g ( 𝜑𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) )
cvmlift2.p ( 𝜑𝑃𝐵 )
cvmlift2.i ( 𝜑 → ( 𝐹𝑃 ) = ( 0 𝐺 0 ) )
cvmlift2.h 𝐻 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
cvmlift2.k 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑥 ) ) ) ‘ 𝑦 ) )
Assertion cvmlift2lem4 ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → ( 𝑋 𝐾 𝑌 ) = ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) ‘ 𝑌 ) )

Proof

Step Hyp Ref Expression
1 cvmlift2.b 𝐵 = 𝐶
2 cvmlift2.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
3 cvmlift2.g ( 𝜑𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) )
4 cvmlift2.p ( 𝜑𝑃𝐵 )
5 cvmlift2.i ( 𝜑 → ( 𝐹𝑃 ) = ( 0 𝐺 0 ) )
6 cvmlift2.h 𝐻 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
7 cvmlift2.k 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑥 ) ) ) ‘ 𝑦 ) )
8 oveq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐺 𝑧 ) = ( 𝑋 𝐺 𝑧 ) )
9 8 mpteq2dv ( 𝑥 = 𝑋 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) )
10 9 eqeq2d ( 𝑥 = 𝑋 → ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ↔ ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ) )
11 fveq2 ( 𝑥 = 𝑋 → ( 𝐻𝑥 ) = ( 𝐻𝑋 ) )
12 11 eqeq2d ( 𝑥 = 𝑋 → ( ( 𝑓 ‘ 0 ) = ( 𝐻𝑥 ) ↔ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) )
13 10 12 anbi12d ( 𝑥 = 𝑋 → ( ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑥 ) ) ↔ ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) )
14 13 riotabidv ( 𝑥 = 𝑋 → ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑥 ) ) ) = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) )
15 14 fveq1d ( 𝑥 = 𝑋 → ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑥 ) ) ) ‘ 𝑦 ) = ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) ‘ 𝑦 ) )
16 fveq2 ( 𝑦 = 𝑌 → ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) ‘ 𝑦 ) = ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) ‘ 𝑌 ) )
17 fvex ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) ‘ 𝑌 ) ∈ V
18 15 16 7 17 ovmpo ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → ( 𝑋 𝐾 𝑌 ) = ( ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻𝑋 ) ) ) ‘ 𝑌 ) )