Metamath Proof Explorer


Theorem cvmlift2lem4

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 1-Jun-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
Assertion cvmlift2lem4 X01Y01XKY=ιfIICnC|Ff=z01XGzf0=HXY

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 oveq1 x=XxGz=XGz
9 8 mpteq2dv x=Xz01xGz=z01XGz
10 9 eqeq2d x=XFf=z01xGzFf=z01XGz
11 fveq2 x=XHx=HX
12 11 eqeq2d x=Xf0=Hxf0=HX
13 10 12 anbi12d x=XFf=z01xGzf0=HxFf=z01XGzf0=HX
14 13 riotabidv x=XιfIICnC|Ff=z01xGzf0=Hx=ιfIICnC|Ff=z01XGzf0=HX
15 14 fveq1d x=XιfIICnC|Ff=z01xGzf0=Hxy=ιfIICnC|Ff=z01XGzf0=HXy
16 fveq2 y=YιfIICnC|Ff=z01XGzf0=HXy=ιfIICnC|Ff=z01XGzf0=HXY
17 fvex ιfIICnC|Ff=z01XGzf0=HXYV
18 15 16 7 17 ovmpo X01Y01XKY=ιfIICnC|Ff=z01XGzf0=HXY