Metamath Proof Explorer


Theorem cvmlift2lem5

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B = C
cvmlift2.f φ F C CovMap J
cvmlift2.g φ G II × t II Cn J
cvmlift2.p φ P B
cvmlift2.i φ F P = 0 G 0
cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
Assertion cvmlift2lem5 φ K : 0 1 × 0 1 B

Proof

Step Hyp Ref Expression
1 cvmlift2.b B = C
2 cvmlift2.f φ F C CovMap J
3 cvmlift2.g φ G II × t II Cn J
4 cvmlift2.p φ P B
5 cvmlift2.i φ F P = 0 G 0
6 cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
7 cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
8 eqid ι f II Cn C | F f = z 0 1 x G z f 0 = H x = ι f II Cn C | F f = z 0 1 x G z f 0 = H x
9 1 2 3 4 5 6 8 cvmlift2lem3 φ x 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C F ι f II Cn C | F f = z 0 1 x G z f 0 = H x = z 0 1 x G z ι f II Cn C | F f = z 0 1 x G z f 0 = H x 0 = H x
10 9 adantrr φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C F ι f II Cn C | F f = z 0 1 x G z f 0 = H x = z 0 1 x G z ι f II Cn C | F f = z 0 1 x G z f 0 = H x 0 = H x
11 10 simp1d φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C
12 iiuni 0 1 = II
13 12 1 cnf ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C ι f II Cn C | F f = z 0 1 x G z f 0 = H x : 0 1 B
14 11 13 syl φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x : 0 1 B
15 simprr φ x 0 1 y 0 1 y 0 1
16 14 15 ffvelrnd φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y B
17 16 ralrimivva φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y B
18 7 fmpo x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y B K : 0 1 × 0 1 B
19 17 18 sylib φ K : 0 1 × 0 1 B