Metamath Proof Explorer


Theorem cvmlift2lem5

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
Assertion cvmlift2lem5 φK:01×01B

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2.k K=x01,y01ιfIICnC|Ff=z01xGzf0=Hxy
8 eqid ιfIICnC|Ff=z01xGzf0=Hx=ιfIICnC|Ff=z01xGzf0=Hx
9 1 2 3 4 5 6 8 cvmlift2lem3 φx01ιfIICnC|Ff=z01xGzf0=HxIICnCFιfIICnC|Ff=z01xGzf0=Hx=z01xGzιfIICnC|Ff=z01xGzf0=Hx0=Hx
10 9 adantrr φx01y01ιfIICnC|Ff=z01xGzf0=HxIICnCFιfIICnC|Ff=z01xGzf0=Hx=z01xGzιfIICnC|Ff=z01xGzf0=Hx0=Hx
11 10 simp1d φx01y01ιfIICnC|Ff=z01xGzf0=HxIICnC
12 iiuni 01=II
13 12 1 cnf ιfIICnC|Ff=z01xGzf0=HxIICnCιfIICnC|Ff=z01xGzf0=Hx:01B
14 11 13 syl φx01y01ιfIICnC|Ff=z01xGzf0=Hx:01B
15 simprr φx01y01y01
16 14 15 ffvelcdmd φx01y01ιfIICnC|Ff=z01xGzf0=HxyB
17 16 ralrimivva φx01y01ιfIICnC|Ff=z01xGzf0=HxyB
18 7 fmpo x01y01ιfIICnC|Ff=z01xGzf0=HxyBK:01×01B
19 17 18 sylib φK:01×01B