| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 |  | eqid |  |-  ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) | 
						
							| 9 | 1 2 3 4 5 6 8 | cvmlift2lem3 |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` 0 ) = ( H ` x ) ) ) | 
						
							| 10 | 9 | adantrr |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` 0 ) = ( H ` x ) ) ) | 
						
							| 11 | 10 | simp1d |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) ) | 
						
							| 12 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 13 | 12 1 | cnf |  |-  ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 14 | 11 13 | syl |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 15 |  | simprr |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> y e. ( 0 [,] 1 ) ) | 
						
							| 16 | 14 15 | ffvelcdmd |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) e. B ) | 
						
							| 17 | 16 | ralrimivva |  |-  ( ph -> A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) e. B ) | 
						
							| 18 | 7 | fmpo |  |-  ( A. x e. ( 0 [,] 1 ) A. y e. ( 0 [,] 1 ) ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) e. B <-> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 19 | 17 18 | sylib |  |-  ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |