| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2lem3.1 |  |-  K = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> F e. ( C CovMap J ) ) | 
						
							| 9 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) | 
						
							| 12 | 10 10 11 | cnmptc |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( z e. ( 0 [,] 1 ) |-> X ) e. ( II Cn II ) ) | 
						
							| 13 | 10 | cnmptid |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( z e. ( 0 [,] 1 ) |-> z ) e. ( II Cn II ) ) | 
						
							| 14 | 3 | adantr |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 15 | 10 12 13 14 | cnmpt12f |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) e. ( II Cn J ) ) | 
						
							| 16 | 1 2 3 4 5 6 | cvmlift2lem2 |  |-  ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) | 
						
							| 17 | 16 | simp1d |  |-  ( ph -> H e. ( II Cn C ) ) | 
						
							| 18 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 19 | 18 1 | cnf |  |-  ( H e. ( II Cn C ) -> H : ( 0 [,] 1 ) --> B ) | 
						
							| 20 | 17 19 | syl |  |-  ( ph -> H : ( 0 [,] 1 ) --> B ) | 
						
							| 21 | 20 | ffvelcdmda |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( H ` X ) e. B ) | 
						
							| 22 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 23 |  | oveq2 |  |-  ( z = 0 -> ( X G z ) = ( X G 0 ) ) | 
						
							| 24 |  | eqid |  |-  ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) | 
						
							| 25 |  | ovex |  |-  ( X G 0 ) e. _V | 
						
							| 26 | 23 24 25 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ` 0 ) = ( X G 0 ) ) | 
						
							| 27 | 22 26 | mp1i |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ` 0 ) = ( X G 0 ) ) | 
						
							| 28 | 16 | simp2d |  |-  ( ph -> ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) | 
						
							| 29 | 28 | fveq1d |  |-  ( ph -> ( ( F o. H ) ` X ) = ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` X ) ) | 
						
							| 30 |  | oveq1 |  |-  ( z = X -> ( z G 0 ) = ( X G 0 ) ) | 
						
							| 31 |  | eqid |  |-  ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) | 
						
							| 32 | 30 31 25 | fvmpt |  |-  ( X e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` X ) = ( X G 0 ) ) | 
						
							| 33 | 29 32 | sylan9eq |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F o. H ) ` X ) = ( X G 0 ) ) | 
						
							| 34 |  | fvco3 |  |-  ( ( H : ( 0 [,] 1 ) --> B /\ X e. ( 0 [,] 1 ) ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) | 
						
							| 35 | 20 34 | sylan |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) | 
						
							| 36 | 27 33 35 | 3eqtr2rd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( F ` ( H ` X ) ) = ( ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ` 0 ) ) | 
						
							| 37 | 1 7 8 15 21 36 | cvmliftiota |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K e. ( II Cn C ) /\ ( F o. K ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( K ` 0 ) = ( H ` X ) ) ) |