Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
|- B = U. C |
2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
7 |
|
cvmlift2lem3.1 |
|- K = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) |
8 |
2
|
adantr |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> F e. ( C CovMap J ) ) |
9 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
10 |
9
|
a1i |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
11 |
|
simpr |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) |
12 |
10 10 11
|
cnmptc |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( z e. ( 0 [,] 1 ) |-> X ) e. ( II Cn II ) ) |
13 |
10
|
cnmptid |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( z e. ( 0 [,] 1 ) |-> z ) e. ( II Cn II ) ) |
14 |
3
|
adantr |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> G e. ( ( II tX II ) Cn J ) ) |
15 |
10 12 13 14
|
cnmpt12f |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) e. ( II Cn J ) ) |
16 |
1 2 3 4 5 6
|
cvmlift2lem2 |
|- ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) |
17 |
16
|
simp1d |
|- ( ph -> H e. ( II Cn C ) ) |
18 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
19 |
18 1
|
cnf |
|- ( H e. ( II Cn C ) -> H : ( 0 [,] 1 ) --> B ) |
20 |
17 19
|
syl |
|- ( ph -> H : ( 0 [,] 1 ) --> B ) |
21 |
20
|
ffvelrnda |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( H ` X ) e. B ) |
22 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
23 |
|
oveq2 |
|- ( z = 0 -> ( X G z ) = ( X G 0 ) ) |
24 |
|
eqid |
|- ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) |
25 |
|
ovex |
|- ( X G 0 ) e. _V |
26 |
23 24 25
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ` 0 ) = ( X G 0 ) ) |
27 |
22 26
|
mp1i |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ` 0 ) = ( X G 0 ) ) |
28 |
16
|
simp2d |
|- ( ph -> ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ) |
29 |
28
|
fveq1d |
|- ( ph -> ( ( F o. H ) ` X ) = ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` X ) ) |
30 |
|
oveq1 |
|- ( z = X -> ( z G 0 ) = ( X G 0 ) ) |
31 |
|
eqid |
|- ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) |
32 |
30 31 25
|
fvmpt |
|- ( X e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` X ) = ( X G 0 ) ) |
33 |
29 32
|
sylan9eq |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F o. H ) ` X ) = ( X G 0 ) ) |
34 |
|
fvco3 |
|- ( ( H : ( 0 [,] 1 ) --> B /\ X e. ( 0 [,] 1 ) ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) |
35 |
20 34
|
sylan |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( F o. H ) ` X ) = ( F ` ( H ` X ) ) ) |
36 |
27 33 35
|
3eqtr2rd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( F ` ( H ` X ) ) = ( ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) ` 0 ) ) |
37 |
1 7 8 15 21 36
|
cvmliftiota |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K e. ( II Cn C ) /\ ( F o. K ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( K ` 0 ) = ( H ` X ) ) ) |