| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 9 | 8 | cnmptid |  |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> z ) e. ( II Cn II ) ) | 
						
							| 10 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 12 | 8 8 11 | cnmptc |  |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) ) | 
						
							| 13 | 8 9 12 3 | cnmpt12f |  |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) e. ( II Cn J ) ) | 
						
							| 14 |  | oveq1 |  |-  ( z = 0 -> ( z G 0 ) = ( 0 G 0 ) ) | 
						
							| 15 |  | eqid |  |-  ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) | 
						
							| 16 |  | ovex |  |-  ( 0 G 0 ) e. _V | 
						
							| 17 | 14 15 16 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) = ( 0 G 0 ) ) | 
						
							| 18 | 10 17 | ax-mp |  |-  ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) = ( 0 G 0 ) | 
						
							| 19 | 5 18 | eqtr4di |  |-  ( ph -> ( F ` P ) = ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) ) | 
						
							| 20 | 1 6 2 13 4 19 | cvmliftiota |  |-  ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) |