Metamath Proof Explorer


Theorem cvmlift2lem2

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b
|- B = U. C
cvmlift2.f
|- ( ph -> F e. ( C CovMap J ) )
cvmlift2.g
|- ( ph -> G e. ( ( II tX II ) Cn J ) )
cvmlift2.p
|- ( ph -> P e. B )
cvmlift2.i
|- ( ph -> ( F ` P ) = ( 0 G 0 ) )
cvmlift2.h
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) )
Assertion cvmlift2lem2
|- ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) )

Proof

Step Hyp Ref Expression
1 cvmlift2.b
 |-  B = U. C
2 cvmlift2.f
 |-  ( ph -> F e. ( C CovMap J ) )
3 cvmlift2.g
 |-  ( ph -> G e. ( ( II tX II ) Cn J ) )
4 cvmlift2.p
 |-  ( ph -> P e. B )
5 cvmlift2.i
 |-  ( ph -> ( F ` P ) = ( 0 G 0 ) )
6 cvmlift2.h
 |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) )
7 iitopon
 |-  II e. ( TopOn ` ( 0 [,] 1 ) )
8 7 a1i
 |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) )
9 8 cnmptid
 |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> z ) e. ( II Cn II ) )
10 0elunit
 |-  0 e. ( 0 [,] 1 )
11 10 a1i
 |-  ( ph -> 0 e. ( 0 [,] 1 ) )
12 8 8 11 cnmptc
 |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) )
13 8 9 12 3 cnmpt12f
 |-  ( ph -> ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) e. ( II Cn J ) )
14 oveq1
 |-  ( z = 0 -> ( z G 0 ) = ( 0 G 0 ) )
15 eqid
 |-  ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) )
16 ovex
 |-  ( 0 G 0 ) e. _V
17 14 15 16 fvmpt
 |-  ( 0 e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) = ( 0 G 0 ) )
18 10 17 ax-mp
 |-  ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) = ( 0 G 0 )
19 5 18 eqtr4di
 |-  ( ph -> ( F ` P ) = ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) )
20 1 6 2 13 4 19 cvmliftiota
 |-  ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) )