Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
|- B = U. C |
2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
7 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
8 |
7
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
9 |
8
|
cnmptid |
|- ( ph -> ( z e. ( 0 [,] 1 ) |-> z ) e. ( II Cn II ) ) |
10 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
11 |
10
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
12 |
8 8 11
|
cnmptc |
|- ( ph -> ( z e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) ) |
13 |
8 9 12 3
|
cnmpt12f |
|- ( ph -> ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) e. ( II Cn J ) ) |
14 |
|
oveq1 |
|- ( z = 0 -> ( z G 0 ) = ( 0 G 0 ) ) |
15 |
|
eqid |
|- ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) |
16 |
|
ovex |
|- ( 0 G 0 ) e. _V |
17 |
14 15 16
|
fvmpt |
|- ( 0 e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) = ( 0 G 0 ) ) |
18 |
10 17
|
ax-mp |
|- ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) = ( 0 G 0 ) |
19 |
5 18
|
eqtr4di |
|- ( ph -> ( F ` P ) = ( ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) ` 0 ) ) |
20 |
1 6 2 13 4 19
|
cvmliftiota |
|- ( ph -> ( H e. ( II Cn C ) /\ ( F o. H ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( H ` 0 ) = P ) ) |