| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 9 | 8 | cnmptid | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  𝑧 )  ∈  ( II  Cn  II ) ) | 
						
							| 10 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] 1 ) ) | 
						
							| 12 | 8 8 11 | cnmptc | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  0 )  ∈  ( II  Cn  II ) ) | 
						
							| 13 | 8 9 12 3 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑧  =  0  →  ( 𝑧 𝐺 0 )  =  ( 0 𝐺 0 ) ) | 
						
							| 15 |  | eqid | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) | 
						
							| 16 |  | ovex | ⊢ ( 0 𝐺 0 )  ∈  V | 
						
							| 17 | 14 15 16 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) ‘ 0 )  =  ( 0 𝐺 0 ) ) | 
						
							| 18 | 10 17 | ax-mp | ⊢ ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) ‘ 0 )  =  ( 0 𝐺 0 ) | 
						
							| 19 | 5 18 | eqtr4di | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) ‘ 0 ) ) | 
						
							| 20 | 1 6 2 13 4 19 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐻 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝐻 ‘ 0 )  =  𝑃 ) ) |