| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
| 6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 7 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 9 |
8
|
cnmptid |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ 𝑧 ) ∈ ( II Cn II ) ) |
| 10 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
| 12 |
8 8 11
|
cnmptc |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ 0 ) ∈ ( II Cn II ) ) |
| 13 |
8 9 12 3
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∈ ( II Cn 𝐽 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 𝐺 0 ) = ( 0 𝐺 0 ) ) |
| 15 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) |
| 16 |
|
ovex |
⊢ ( 0 𝐺 0 ) ∈ V |
| 17 |
14 15 16
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 0 ) = ( 0 𝐺 0 ) ) |
| 18 |
10 17
|
ax-mp |
⊢ ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 0 ) = ( 0 𝐺 0 ) |
| 19 |
5 18
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 0 ) ) |
| 20 |
1 6 2 13 4 19
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐻 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) |