Metamath Proof Explorer


Theorem cvmlift2lem2

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b 𝐵 = 𝐶
cvmlift2.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmlift2.g ( 𝜑𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) )
cvmlift2.p ( 𝜑𝑃𝐵 )
cvmlift2.i ( 𝜑 → ( 𝐹𝑃 ) = ( 0 𝐺 0 ) )
cvmlift2.h 𝐻 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
Assertion cvmlift2lem2 ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝐻 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) )

Proof

Step Hyp Ref Expression
1 cvmlift2.b 𝐵 = 𝐶
2 cvmlift2.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
3 cvmlift2.g ( 𝜑𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) )
4 cvmlift2.p ( 𝜑𝑃𝐵 )
5 cvmlift2.i ( 𝜑 → ( 𝐹𝑃 ) = ( 0 𝐺 0 ) )
6 cvmlift2.h 𝐻 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
7 iitopon II ∈ ( TopOn ‘ ( 0 [,] 1 ) )
8 7 a1i ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) )
9 8 cnmptid ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ 𝑧 ) ∈ ( II Cn II ) )
10 0elunit 0 ∈ ( 0 [,] 1 )
11 10 a1i ( 𝜑 → 0 ∈ ( 0 [,] 1 ) )
12 8 8 11 cnmptc ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ 0 ) ∈ ( II Cn II ) )
13 8 9 12 3 cnmpt12f ( 𝜑 → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∈ ( II Cn 𝐽 ) )
14 oveq1 ( 𝑧 = 0 → ( 𝑧 𝐺 0 ) = ( 0 𝐺 0 ) )
15 eqid ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) )
16 ovex ( 0 𝐺 0 ) ∈ V
17 14 15 16 fvmpt ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 0 ) = ( 0 𝐺 0 ) )
18 10 17 ax-mp ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 0 ) = ( 0 𝐺 0 )
19 5 18 eqtr4di ( 𝜑 → ( 𝐹𝑃 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 0 ) )
20 1 6 2 13 4 19 cvmliftiota ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝐻 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) )