| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2lem3.1 | ⊢ 𝐾  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 9 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝑋  ∈  ( 0 [,] 1 ) ) | 
						
							| 12 | 10 10 11 | cnmptc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  𝑋 )  ∈  ( II  Cn  II ) ) | 
						
							| 13 | 10 | cnmptid | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  𝑧 )  ∈  ( II  Cn  II ) ) | 
						
							| 14 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 15 | 10 12 13 14 | cnmpt12f | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 16 | 1 2 3 4 5 6 | cvmlift2lem2 | ⊢ ( 𝜑  →  ( 𝐻  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐻 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝐻 ‘ 0 )  =  𝑃 ) ) | 
						
							| 17 | 16 | simp1d | ⊢ ( 𝜑  →  𝐻  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 18 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 19 | 18 1 | cnf | ⊢ ( 𝐻  ∈  ( II  Cn  𝐶 )  →  𝐻 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 20 | 17 19 | syl | ⊢ ( 𝜑  →  𝐻 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 21 | 20 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐻 ‘ 𝑋 )  ∈  𝐵 ) | 
						
							| 22 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 23 |  | oveq2 | ⊢ ( 𝑧  =  0  →  ( 𝑋 𝐺 𝑧 )  =  ( 𝑋 𝐺 0 ) ) | 
						
							| 24 |  | eqid | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) ) | 
						
							| 25 |  | ovex | ⊢ ( 𝑋 𝐺 0 )  ∈  V | 
						
							| 26 | 23 24 25 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) ) ‘ 0 )  =  ( 𝑋 𝐺 0 ) ) | 
						
							| 27 | 22 26 | mp1i | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) ) ‘ 0 )  =  ( 𝑋 𝐺 0 ) ) | 
						
							| 28 | 16 | simp2d | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) ) | 
						
							| 29 | 28 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) ‘ 𝑋 ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑧 𝐺 0 )  =  ( 𝑋 𝐺 0 ) ) | 
						
							| 31 |  | eqid | ⊢ ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) | 
						
							| 32 | 30 31 25 | fvmpt | ⊢ ( 𝑋  ∈  ( 0 [,] 1 )  →  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) ) ‘ 𝑋 )  =  ( 𝑋 𝐺 0 ) ) | 
						
							| 33 | 29 32 | sylan9eq | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝑋 𝐺 0 ) ) | 
						
							| 34 |  | fvco3 | ⊢ ( ( 𝐻 : ( 0 [,] 1 ) ⟶ 𝐵  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 35 | 20 34 | sylan | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐻 ) ‘ 𝑋 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 36 | 27 33 35 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) )  =  ( ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) ) ‘ 0 ) ) | 
						
							| 37 | 1 7 8 15 21 36 | cvmliftiota | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐾  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝐾 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) |