Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
7 |
|
cvmlift2lem3.1 |
⊢ 𝐾 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
9 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
12 |
10 10 11
|
cnmptc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ 𝑋 ) ∈ ( II Cn II ) ) |
13 |
10
|
cnmptid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ 𝑧 ) ∈ ( II Cn II ) ) |
14 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
15 |
10 12 13 14
|
cnmpt12f |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∈ ( II Cn 𝐽 ) ) |
16 |
1 2 3 4 5 6
|
cvmlift2lem2 |
⊢ ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐻 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) |
17 |
16
|
simp1d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐶 ) ) |
18 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
19 |
18 1
|
cnf |
⊢ ( 𝐻 ∈ ( II Cn 𝐶 ) → 𝐻 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
20 |
17 19
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
21 |
20
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐻 ‘ 𝑋 ) ∈ 𝐵 ) |
22 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
23 |
|
oveq2 |
⊢ ( 𝑧 = 0 → ( 𝑋 𝐺 𝑧 ) = ( 𝑋 𝐺 0 ) ) |
24 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) |
25 |
|
ovex |
⊢ ( 𝑋 𝐺 0 ) ∈ V |
26 |
23 24 25
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ‘ 0 ) = ( 𝑋 𝐺 0 ) ) |
27 |
22 26
|
mp1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ‘ 0 ) = ( 𝑋 𝐺 0 ) ) |
28 |
16
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ) |
29 |
28
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 𝑋 ) ) |
30 |
|
oveq1 |
⊢ ( 𝑧 = 𝑋 → ( 𝑧 𝐺 0 ) = ( 𝑋 𝐺 0 ) ) |
31 |
|
eqid |
⊢ ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) |
32 |
30 31 25
|
fvmpt |
⊢ ( 𝑋 ∈ ( 0 [,] 1 ) → ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ‘ 𝑋 ) = ( 𝑋 𝐺 0 ) ) |
33 |
29 32
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝑋 𝐺 0 ) ) |
34 |
|
fvco3 |
⊢ ( ( 𝐻 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) |
35 |
20 34
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) ) |
36 |
27 33 35
|
3eqtr2rd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐻 ‘ 𝑋 ) ) = ( ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ‘ 0 ) ) |
37 |
1 7 8 15 21 36
|
cvmliftiota |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐾 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝐾 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |