Metamath Proof Explorer


Theorem cvmlift2lem3

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
cvmlift2lem3.1 K=ιfIICnC|Ff=z01XGzf0=HX
Assertion cvmlift2lem3 φX01KIICnCFK=z01XGzK0=HX

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 cvmlift2lem3.1 K=ιfIICnC|Ff=z01XGzf0=HX
8 2 adantr φX01FCCovMapJ
9 iitopon IITopOn01
10 9 a1i φX01IITopOn01
11 simpr φX01X01
12 10 10 11 cnmptc φX01z01XIICnII
13 10 cnmptid φX01z01zIICnII
14 3 adantr φX01GII×tIICnJ
15 10 12 13 14 cnmpt12f φX01z01XGzIICnJ
16 1 2 3 4 5 6 cvmlift2lem2 φHIICnCFH=z01zG0H0=P
17 16 simp1d φHIICnC
18 iiuni 01=II
19 18 1 cnf HIICnCH:01B
20 17 19 syl φH:01B
21 20 ffvelcdmda φX01HXB
22 0elunit 001
23 oveq2 z=0XGz=XG0
24 eqid z01XGz=z01XGz
25 ovex XG0V
26 23 24 25 fvmpt 001z01XGz0=XG0
27 22 26 mp1i φX01z01XGz0=XG0
28 16 simp2d φFH=z01zG0
29 28 fveq1d φFHX=z01zG0X
30 oveq1 z=XzG0=XG0
31 eqid z01zG0=z01zG0
32 30 31 25 fvmpt X01z01zG0X=XG0
33 29 32 sylan9eq φX01FHX=XG0
34 fvco3 H:01BX01FHX=FHX
35 20 34 sylan φX01FHX=FHX
36 27 33 35 3eqtr2rd φX01FHX=z01XGz0
37 1 7 8 15 21 36 cvmliftiota φX01KIICnCFK=z01XGzK0=HX