Metamath Proof Explorer


Theorem cvmlift2lem2

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B=C
cvmlift2.f φFCCovMapJ
cvmlift2.g φGII×tIICnJ
cvmlift2.p φPB
cvmlift2.i φFP=0G0
cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
Assertion cvmlift2lem2 φHIICnCFH=z01zG0H0=P

Proof

Step Hyp Ref Expression
1 cvmlift2.b B=C
2 cvmlift2.f φFCCovMapJ
3 cvmlift2.g φGII×tIICnJ
4 cvmlift2.p φPB
5 cvmlift2.i φFP=0G0
6 cvmlift2.h H=ιfIICnC|Ff=z01zG0f0=P
7 iitopon IITopOn01
8 7 a1i φIITopOn01
9 8 cnmptid φz01zIICnII
10 0elunit 001
11 10 a1i φ001
12 8 8 11 cnmptc φz010IICnII
13 8 9 12 3 cnmpt12f φz01zG0IICnJ
14 oveq1 z=0zG0=0G0
15 eqid z01zG0=z01zG0
16 ovex 0G0V
17 14 15 16 fvmpt 001z01zG00=0G0
18 10 17 ax-mp z01zG00=0G0
19 5 18 eqtr4di φFP=z01zG00
20 1 6 2 13 4 19 cvmliftiota φHIICnCFH=z01zG0H0=P