| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | cvmlift2lem5 |  |-  ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 10 | 9 | ffnd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 11 |  | fnov |  |-  ( K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> K = ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> K = ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) | 
						
							| 13 | 12 | reseq1d |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) = ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 14 |  | simpr |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) | 
						
							| 15 | 14 | snssd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> { X } C_ ( 0 [,] 1 ) ) | 
						
							| 16 |  | ssid |  |-  ( 0 [,] 1 ) C_ ( 0 [,] 1 ) | 
						
							| 17 |  | resmpo |  |-  ( ( { X } C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ ( 0 [,] 1 ) ) -> ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) | 
						
							| 18 | 15 16 17 | sylancl |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) | 
						
							| 19 |  | elsni |  |-  ( u e. { X } -> u = X ) | 
						
							| 20 | 19 | 3ad2ant2 |  |-  ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> u = X ) | 
						
							| 21 | 20 | oveq1d |  |-  ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> ( u K v ) = ( X K v ) ) | 
						
							| 22 |  | simp1r |  |-  ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) | 
						
							| 23 |  | simp3 |  |-  ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 | cvmlift2lem4 |  |-  ( ( X e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( X K v ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) | 
						
							| 25 | 22 23 24 | syl2anc |  |-  ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> ( X K v ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) | 
						
							| 26 | 21 25 | eqtrd |  |-  ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> ( u K v ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) | 
						
							| 27 | 26 | mpoeq3dva |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( u K v ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) ) | 
						
							| 28 | 18 27 | eqtrd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) ) | 
						
							| 29 | 13 28 | eqtrd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) ) | 
						
							| 30 |  | eqid |  |-  ( II |`t { X } ) = ( II |`t { X } ) | 
						
							| 31 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 32 | 31 | a1i |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 33 |  | eqid |  |-  ( II |`t ( 0 [,] 1 ) ) = ( II |`t ( 0 [,] 1 ) ) | 
						
							| 34 | 16 | a1i |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( 0 [,] 1 ) C_ ( 0 [,] 1 ) ) | 
						
							| 35 | 32 32 | cnmpt2nd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> v ) e. ( ( II tX II ) Cn II ) ) | 
						
							| 36 |  | eqid |  |-  ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) | 
						
							| 37 | 1 2 3 4 5 6 36 | cvmlift2lem3 |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` 0 ) = ( H ` X ) ) ) | 
						
							| 38 | 37 | simp1d |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) e. ( II Cn C ) ) | 
						
							| 39 | 32 32 35 38 | cnmpt21f |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) e. ( ( II tX II ) Cn C ) ) | 
						
							| 40 | 30 32 15 33 32 34 39 | cnmpt2res |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) e. ( ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) Cn C ) ) | 
						
							| 41 |  | iitop |  |-  II e. Top | 
						
							| 42 |  | snex |  |-  { X } e. _V | 
						
							| 43 |  | ovex |  |-  ( 0 [,] 1 ) e. _V | 
						
							| 44 |  | txrest |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( { X } e. _V /\ ( 0 [,] 1 ) e. _V ) ) -> ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) = ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) ) | 
						
							| 45 | 41 41 42 43 44 | mp4an |  |-  ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) = ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) | 
						
							| 46 | 45 | oveq1i |  |-  ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) = ( ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) Cn C ) | 
						
							| 47 | 40 46 | eleqtrrdi |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) ) | 
						
							| 48 | 29 47 | eqeltrd |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) ) |