Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
|- B = U. C |
2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
7 |
|
cvmlift2.k |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) |
8 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
|- ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
9 |
8
|
adantr |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) |
10 |
9
|
ffnd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
11 |
|
fnov |
|- ( K Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> K = ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) |
12 |
10 11
|
sylib |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> K = ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) |
13 |
12
|
reseq1d |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) = ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) ) |
14 |
|
simpr |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) |
15 |
14
|
snssd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> { X } C_ ( 0 [,] 1 ) ) |
16 |
|
ssid |
|- ( 0 [,] 1 ) C_ ( 0 [,] 1 ) |
17 |
|
resmpo |
|- ( ( { X } C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ ( 0 [,] 1 ) ) -> ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) |
18 |
15 16 17
|
sylancl |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( u K v ) ) ) |
19 |
|
elsni |
|- ( u e. { X } -> u = X ) |
20 |
19
|
3ad2ant2 |
|- ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> u = X ) |
21 |
20
|
oveq1d |
|- ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> ( u K v ) = ( X K v ) ) |
22 |
|
simp1r |
|- ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> X e. ( 0 [,] 1 ) ) |
23 |
|
simp3 |
|- ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) |
24 |
1 2 3 4 5 6 7
|
cvmlift2lem4 |
|- ( ( X e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) -> ( X K v ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) |
25 |
22 23 24
|
syl2anc |
|- ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> ( X K v ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) |
26 |
21 25
|
eqtrd |
|- ( ( ( ph /\ X e. ( 0 [,] 1 ) ) /\ u e. { X } /\ v e. ( 0 [,] 1 ) ) -> ( u K v ) = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) |
27 |
26
|
mpoeq3dva |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( u K v ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) ) |
28 |
18 27
|
eqtrd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( u K v ) ) |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) ) |
29 |
13 28
|
eqtrd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) = ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) ) |
30 |
|
eqid |
|- ( II |`t { X } ) = ( II |`t { X } ) |
31 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
32 |
31
|
a1i |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
33 |
|
eqid |
|- ( II |`t ( 0 [,] 1 ) ) = ( II |`t ( 0 [,] 1 ) ) |
34 |
16
|
a1i |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( 0 [,] 1 ) C_ ( 0 [,] 1 ) ) |
35 |
32 32
|
cnmpt2nd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> v ) e. ( ( II tX II ) Cn II ) ) |
36 |
|
eqid |
|- ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) |
37 |
1 2 3 4 5 6 36
|
cvmlift2lem3 |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` 0 ) = ( H ` X ) ) ) |
38 |
37
|
simp1d |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) e. ( II Cn C ) ) |
39 |
32 32 35 38
|
cnmpt21f |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. ( 0 [,] 1 ) , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) e. ( ( II tX II ) Cn C ) ) |
40 |
30 32 15 33 32 34 39
|
cnmpt2res |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) e. ( ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) Cn C ) ) |
41 |
|
iitop |
|- II e. Top |
42 |
|
snex |
|- { X } e. _V |
43 |
|
ovex |
|- ( 0 [,] 1 ) e. _V |
44 |
|
txrest |
|- ( ( ( II e. Top /\ II e. Top ) /\ ( { X } e. _V /\ ( 0 [,] 1 ) e. _V ) ) -> ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) = ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) ) |
45 |
41 41 42 43 44
|
mp4an |
|- ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) = ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) |
46 |
45
|
oveq1i |
|- ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) = ( ( ( II |`t { X } ) tX ( II |`t ( 0 [,] 1 ) ) ) Cn C ) |
47 |
40 46
|
eleqtrrdi |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( u e. { X } , v e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( X G z ) ) /\ ( f ` 0 ) = ( H ` X ) ) ) ` v ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) ) |
48 |
29 47
|
eqeltrd |
|- ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) ) |