Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
7 |
|
cvmlift2.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
8 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
⊢ ( 𝜑 → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
10 |
9
|
ffnd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝐾 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
11 |
|
fnov |
⊢ ( 𝐾 Fn ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ↔ 𝐾 = ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ) |
12 |
10 11
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝐾 = ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ) |
13 |
12
|
reseq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
15 |
14
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → { 𝑋 } ⊆ ( 0 [,] 1 ) ) |
16 |
|
ssid |
⊢ ( 0 [,] 1 ) ⊆ ( 0 [,] 1 ) |
17 |
|
resmpo |
⊢ ( ( { 𝑋 } ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ( 0 [,] 1 ) ) → ( ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ) |
18 |
15 16 17
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ) |
19 |
|
elsni |
⊢ ( 𝑢 ∈ { 𝑋 } → 𝑢 = 𝑋 ) |
20 |
19
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) ∧ 𝑢 ∈ { 𝑋 } ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑢 = 𝑋 ) |
21 |
20
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) ∧ 𝑢 ∈ { 𝑋 } ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑢 𝐾 𝑣 ) = ( 𝑋 𝐾 𝑣 ) ) |
22 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) ∧ 𝑢 ∈ { 𝑋 } ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑋 ∈ ( 0 [,] 1 ) ) |
23 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) ∧ 𝑢 ∈ { 𝑋 } ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ( 0 [,] 1 ) ) |
24 |
1 2 3 4 5 6 7
|
cvmlift2lem4 |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑋 𝐾 𝑣 ) = ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) |
25 |
22 23 24
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) ∧ 𝑢 ∈ { 𝑋 } ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑋 𝐾 𝑣 ) = ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) |
26 |
21 25
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) ∧ 𝑢 ∈ { 𝑋 } ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑢 𝐾 𝑣 ) = ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) |
27 |
26
|
mpoeq3dva |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) = ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ) |
28 |
18 27
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( 𝑢 𝐾 𝑣 ) ) ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ) |
29 |
13 28
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ) |
30 |
|
eqid |
⊢ ( II ↾t { 𝑋 } ) = ( II ↾t { 𝑋 } ) |
31 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
33 |
|
eqid |
⊢ ( II ↾t ( 0 [,] 1 ) ) = ( II ↾t ( 0 [,] 1 ) ) |
34 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 0 [,] 1 ) ⊆ ( 0 [,] 1 ) ) |
35 |
32 32
|
cnmpt2nd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ 𝑣 ) ∈ ( ( II ×t II ) Cn II ) ) |
36 |
|
eqid |
⊢ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
37 |
1 2 3 4 5 6 36
|
cvmlift2lem3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) |
38 |
37
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ∈ ( II Cn 𝐶 ) ) |
39 |
32 32 35 38
|
cnmpt21f |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ∈ ( 0 [,] 1 ) , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ∈ ( ( II ×t II ) Cn 𝐶 ) ) |
40 |
30 32 15 33 32 34 39
|
cnmpt2res |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ∈ ( ( ( II ↾t { 𝑋 } ) ×t ( II ↾t ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |
41 |
|
iitop |
⊢ II ∈ Top |
42 |
|
snex |
⊢ { 𝑋 } ∈ V |
43 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
44 |
|
txrest |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( { 𝑋 } ∈ V ∧ ( 0 [,] 1 ) ∈ V ) ) → ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( ( II ↾t { 𝑋 } ) ×t ( II ↾t ( 0 [,] 1 ) ) ) ) |
45 |
41 41 42 43 44
|
mp4an |
⊢ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ( ( II ↾t { 𝑋 } ) ×t ( II ↾t ( 0 [,] 1 ) ) ) |
46 |
45
|
oveq1i |
⊢ ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) = ( ( ( II ↾t { 𝑋 } ) ×t ( II ↾t ( 0 [,] 1 ) ) ) Cn 𝐶 ) |
47 |
40 46
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝑢 ∈ { 𝑋 } , 𝑣 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑋 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |
48 |
29 47
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |