| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2.k | ⊢ 𝐾  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 8 | 1 2 3 4 5 6 7 | cvmlift2lem5 | ⊢ ( 𝜑  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 10 | 9 | ffnd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝐾  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 11 |  | fnov | ⊢ ( 𝐾  Fn  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  ↔  𝐾  =  ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) ) ) | 
						
							| 12 | 10 11 | sylib | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝐾  =  ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) ) ) | 
						
							| 13 | 12 | reseq1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) )  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 14 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  𝑋  ∈  ( 0 [,] 1 ) ) | 
						
							| 15 | 14 | snssd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  { 𝑋 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 16 |  | ssid | ⊢ ( 0 [,] 1 )  ⊆  ( 0 [,] 1 ) | 
						
							| 17 |  | resmpo | ⊢ ( ( { 𝑋 }  ⊆  ( 0 [,] 1 )  ∧  ( 0 [,] 1 )  ⊆  ( 0 [,] 1 ) )  →  ( ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) )  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) ) ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) )  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) ) ) | 
						
							| 19 |  | elsni | ⊢ ( 𝑢  ∈  { 𝑋 }  →  𝑢  =  𝑋 ) | 
						
							| 20 | 19 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  ∧  𝑢  ∈  { 𝑋 }  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑢  =  𝑋 ) | 
						
							| 21 | 20 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  ∧  𝑢  ∈  { 𝑋 }  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑢 𝐾 𝑣 )  =  ( 𝑋 𝐾 𝑣 ) ) | 
						
							| 22 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  ∧  𝑢  ∈  { 𝑋 }  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑋  ∈  ( 0 [,] 1 ) ) | 
						
							| 23 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  ∧  𝑢  ∈  { 𝑋 }  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  𝑣  ∈  ( 0 [,] 1 ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 | cvmlift2lem4 | ⊢ ( ( 𝑋  ∈  ( 0 [,] 1 )  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑋 𝐾 𝑣 )  =  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) | 
						
							| 25 | 22 23 24 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  ∧  𝑢  ∈  { 𝑋 }  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑋 𝐾 𝑣 )  =  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) | 
						
							| 26 | 21 25 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  ∧  𝑢  ∈  { 𝑋 }  ∧  𝑣  ∈  ( 0 [,] 1 ) )  →  ( 𝑢 𝐾 𝑣 )  =  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) | 
						
							| 27 | 26 | mpoeq3dva | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) )  =  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ) | 
						
							| 28 | 18 27 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( 𝑢 𝐾 𝑣 ) )  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ) | 
						
							| 29 | 13 28 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) ) ) | 
						
							| 30 |  | eqid | ⊢ ( II  ↾t  { 𝑋 } )  =  ( II  ↾t  { 𝑋 } ) | 
						
							| 31 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 33 |  | eqid | ⊢ ( II  ↾t  ( 0 [,] 1 ) )  =  ( II  ↾t  ( 0 [,] 1 ) ) | 
						
							| 34 | 16 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 0 [,] 1 )  ⊆  ( 0 [,] 1 ) ) | 
						
							| 35 | 32 32 | cnmpt2nd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  𝑣 )  ∈  ( ( II  ×t  II )  Cn  II ) ) | 
						
							| 36 |  | eqid | ⊢ ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) )  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 37 | 1 2 3 4 5 6 36 | cvmlift2lem3 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) )  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) | 
						
							| 38 | 37 | simp1d | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 39 | 32 32 35 38 | cnmpt21f | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑢  ∈  ( 0 [,] 1 ) ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) )  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ) | 
						
							| 40 | 30 32 15 33 32 34 39 | cnmpt2res | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) )  ∈  ( ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) | 
						
							| 41 |  | iitop | ⊢ II  ∈  Top | 
						
							| 42 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 43 |  | ovex | ⊢ ( 0 [,] 1 )  ∈  V | 
						
							| 44 |  | txrest | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( { 𝑋 }  ∈  V  ∧  ( 0 [,] 1 )  ∈  V ) )  →  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  ( 0 [,] 1 ) ) ) ) | 
						
							| 45 | 41 41 42 43 44 | mp4an | ⊢ ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  ( 0 [,] 1 ) ) ) | 
						
							| 46 | 45 | oveq1i | ⊢ ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 )  =  ( ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  ( 0 [,] 1 ) ) )  Cn  𝐶 ) | 
						
							| 47 | 40 46 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝑢  ∈  { 𝑋 } ,  𝑣  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑋 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑋 ) ) ) ‘ 𝑣 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) | 
						
							| 48 | 29 47 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) |