Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2.b |
|- B = U. C |
2 |
|
cvmlift2.f |
|- ( ph -> F e. ( C CovMap J ) ) |
3 |
|
cvmlift2.g |
|- ( ph -> G e. ( ( II tX II ) Cn J ) ) |
4 |
|
cvmlift2.p |
|- ( ph -> P e. B ) |
5 |
|
cvmlift2.i |
|- ( ph -> ( F ` P ) = ( 0 G 0 ) ) |
6 |
|
cvmlift2.h |
|- H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) |
7 |
|
cvmlift2.k |
|- K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) |
8 |
|
eqid |
|- ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) |
9 |
1 2 3 4 5 6 8
|
cvmlift2lem3 |
|- ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` 0 ) = ( H ` x ) ) ) |
10 |
9
|
adantrr |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` 0 ) = ( H ` x ) ) ) |
11 |
10
|
simp2d |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) |
12 |
11
|
fveq1d |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) ` y ) = ( ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ` y ) ) |
13 |
10
|
simp1d |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) ) |
14 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
15 |
14 1
|
cnf |
|- ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B ) |
16 |
13 15
|
syl |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B ) |
17 |
|
simprr |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> y e. ( 0 [,] 1 ) ) |
18 |
|
fvco3 |
|- ( ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B /\ y e. ( 0 [,] 1 ) ) -> ( ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) ` y ) = ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) |
19 |
16 17 18
|
syl2anc |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) ` y ) = ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) |
20 |
|
oveq2 |
|- ( z = y -> ( x G z ) = ( x G y ) ) |
21 |
|
eqid |
|- ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) |
22 |
|
ovex |
|- ( x G y ) e. _V |
23 |
20 21 22
|
fvmpt |
|- ( y e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ` y ) = ( x G y ) ) |
24 |
17 23
|
syl |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ` y ) = ( x G y ) ) |
25 |
12 19 24
|
3eqtr3d |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) = ( x G y ) ) |
26 |
25
|
3impb |
|- ( ( ph /\ x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) = ( x G y ) ) |
27 |
26
|
mpoeq3dva |
|- ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) |
28 |
16 17
|
ffvelrnd |
|- ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) e. B ) |
29 |
7
|
a1i |
|- ( ph -> K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) |
30 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
31 |
|
eqid |
|- U. J = U. J |
32 |
1 31
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> U. J ) |
33 |
2 30 32
|
3syl |
|- ( ph -> F : B --> U. J ) |
34 |
33
|
feqmptd |
|- ( ph -> F = ( w e. B |-> ( F ` w ) ) ) |
35 |
|
fveq2 |
|- ( w = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) -> ( F ` w ) = ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) |
36 |
28 29 34 35
|
fmpoco |
|- ( ph -> ( F o. K ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) ) |
37 |
|
iitop |
|- II e. Top |
38 |
37 37 14 14
|
txunii |
|- ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) |
39 |
38 31
|
cnf |
|- ( G e. ( ( II tX II ) Cn J ) -> G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J ) |
40 |
|
ffn |
|- ( G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
41 |
3 39 40
|
3syl |
|- ( ph -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) |
42 |
|
fnov |
|- ( G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) |
43 |
41 42
|
sylib |
|- ( ph -> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) |
44 |
27 36 43
|
3eqtr4d |
|- ( ph -> ( F o. K ) = G ) |