| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 |  | eqid |  |-  ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) | 
						
							| 9 | 1 2 3 4 5 6 8 | cvmlift2lem3 |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` 0 ) = ( H ` x ) ) ) | 
						
							| 10 | 9 | adantrr |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) /\ ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` 0 ) = ( H ` x ) ) ) | 
						
							| 11 | 10 | simp2d |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ) | 
						
							| 12 | 11 | fveq1d |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) ` y ) = ( ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ` y ) ) | 
						
							| 13 | 10 | simp1d |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) ) | 
						
							| 14 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 15 | 14 1 | cnf |  |-  ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) e. ( II Cn C ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 16 | 13 15 | syl |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 17 |  | simprr |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> y e. ( 0 [,] 1 ) ) | 
						
							| 18 |  | fvco3 |  |-  ( ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) : ( 0 [,] 1 ) --> B /\ y e. ( 0 [,] 1 ) ) -> ( ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) ` y ) = ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) | 
						
							| 19 | 16 17 18 | syl2anc |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( F o. ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ) ` y ) = ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) | 
						
							| 20 |  | oveq2 |  |-  ( z = y -> ( x G z ) = ( x G y ) ) | 
						
							| 21 |  | eqid |  |-  ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) | 
						
							| 22 |  | ovex |  |-  ( x G y ) e. _V | 
						
							| 23 | 20 21 22 | fvmpt |  |-  ( y e. ( 0 [,] 1 ) -> ( ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ` y ) = ( x G y ) ) | 
						
							| 24 | 17 23 | syl |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) ` y ) = ( x G y ) ) | 
						
							| 25 | 12 19 24 | 3eqtr3d |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) = ( x G y ) ) | 
						
							| 26 | 25 | 3impb |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) -> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) = ( x G y ) ) | 
						
							| 27 | 26 | mpoeq3dva |  |-  ( ph -> ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) | 
						
							| 28 | 16 17 | ffvelcdmd |  |-  ( ( ph /\ ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) -> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) e. B ) | 
						
							| 29 | 7 | a1i |  |-  ( ph -> K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) | 
						
							| 30 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 31 |  | eqid |  |-  U. J = U. J | 
						
							| 32 | 1 31 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> U. J ) | 
						
							| 33 | 2 30 32 | 3syl |  |-  ( ph -> F : B --> U. J ) | 
						
							| 34 | 33 | feqmptd |  |-  ( ph -> F = ( w e. B |-> ( F ` w ) ) ) | 
						
							| 35 |  | fveq2 |  |-  ( w = ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) -> ( F ` w ) = ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) | 
						
							| 36 | 28 29 34 35 | fmpoco |  |-  ( ph -> ( F o. K ) = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( F ` ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) ) ) | 
						
							| 37 |  | iitop |  |-  II e. Top | 
						
							| 38 | 37 37 14 14 | txunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 39 | 38 31 | cnf |  |-  ( G e. ( ( II tX II ) Cn J ) -> G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J ) | 
						
							| 40 |  | ffn |  |-  ( G : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> U. J -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 41 | 3 39 40 | 3syl |  |-  ( ph -> G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 42 |  | fnov |  |-  ( G Fn ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) <-> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) | 
						
							| 43 | 41 42 | sylib |  |-  ( ph -> G = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( x G y ) ) ) | 
						
							| 44 | 27 36 43 | 3eqtr4d |  |-  ( ph -> ( F o. K ) = G ) |