Metamath Proof Explorer


Theorem cvmlift2lem7

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmlift2.b B = C
cvmlift2.f φ F C CovMap J
cvmlift2.g φ G II × t II Cn J
cvmlift2.p φ P B
cvmlift2.i φ F P = 0 G 0
cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
Assertion cvmlift2lem7 φ F K = G

Proof

Step Hyp Ref Expression
1 cvmlift2.b B = C
2 cvmlift2.f φ F C CovMap J
3 cvmlift2.g φ G II × t II Cn J
4 cvmlift2.p φ P B
5 cvmlift2.i φ F P = 0 G 0
6 cvmlift2.h H = ι f II Cn C | F f = z 0 1 z G 0 f 0 = P
7 cvmlift2.k K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
8 eqid ι f II Cn C | F f = z 0 1 x G z f 0 = H x = ι f II Cn C | F f = z 0 1 x G z f 0 = H x
9 1 2 3 4 5 6 8 cvmlift2lem3 φ x 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C F ι f II Cn C | F f = z 0 1 x G z f 0 = H x = z 0 1 x G z ι f II Cn C | F f = z 0 1 x G z f 0 = H x 0 = H x
10 9 adantrr φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C F ι f II Cn C | F f = z 0 1 x G z f 0 = H x = z 0 1 x G z ι f II Cn C | F f = z 0 1 x G z f 0 = H x 0 = H x
11 10 simp2d φ x 0 1 y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x = z 0 1 x G z
12 11 fveq1d φ x 0 1 y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = z 0 1 x G z y
13 10 simp1d φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C
14 iiuni 0 1 = II
15 14 1 cnf ι f II Cn C | F f = z 0 1 x G z f 0 = H x II Cn C ι f II Cn C | F f = z 0 1 x G z f 0 = H x : 0 1 B
16 13 15 syl φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x : 0 1 B
17 simprr φ x 0 1 y 0 1 y 0 1
18 fvco3 ι f II Cn C | F f = z 0 1 x G z f 0 = H x : 0 1 B y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
19 16 17 18 syl2anc φ x 0 1 y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
20 oveq2 z = y x G z = x G y
21 eqid z 0 1 x G z = z 0 1 x G z
22 ovex x G y V
23 20 21 22 fvmpt y 0 1 z 0 1 x G z y = x G y
24 17 23 syl φ x 0 1 y 0 1 z 0 1 x G z y = x G y
25 12 19 24 3eqtr3d φ x 0 1 y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = x G y
26 25 3impb φ x 0 1 y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = x G y
27 26 mpoeq3dva φ x 0 1 , y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y = x 0 1 , y 0 1 x G y
28 16 17 ffvelrnd φ x 0 1 y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y B
29 7 a1i φ K = x 0 1 , y 0 1 ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
30 cvmcn F C CovMap J F C Cn J
31 eqid J = J
32 1 31 cnf F C Cn J F : B J
33 2 30 32 3syl φ F : B J
34 33 feqmptd φ F = w B F w
35 fveq2 w = ι f II Cn C | F f = z 0 1 x G z f 0 = H x y F w = F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
36 28 29 34 35 fmpoco φ F K = x 0 1 , y 0 1 F ι f II Cn C | F f = z 0 1 x G z f 0 = H x y
37 iitop II Top
38 37 37 14 14 txunii 0 1 × 0 1 = II × t II
39 38 31 cnf G II × t II Cn J G : 0 1 × 0 1 J
40 ffn G : 0 1 × 0 1 J G Fn 0 1 × 0 1
41 3 39 40 3syl φ G Fn 0 1 × 0 1
42 fnov G Fn 0 1 × 0 1 G = x 0 1 , y 0 1 x G y
43 41 42 sylib φ G = x 0 1 , y 0 1 x G y
44 27 36 43 3eqtr4d φ F K = G