| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 3 |  | cvmlift2.g |  |-  ( ph -> G e. ( ( II tX II ) Cn J ) ) | 
						
							| 4 |  | cvmlift2.p |  |-  ( ph -> P e. B ) | 
						
							| 5 |  | cvmlift2.i |  |-  ( ph -> ( F ` P ) = ( 0 G 0 ) ) | 
						
							| 6 |  | cvmlift2.h |  |-  H = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( z G 0 ) ) /\ ( f ` 0 ) = P ) ) | 
						
							| 7 |  | cvmlift2.k |  |-  K = ( x e. ( 0 [,] 1 ) , y e. ( 0 [,] 1 ) |-> ( ( iota_ f e. ( II Cn C ) ( ( F o. f ) = ( z e. ( 0 [,] 1 ) |-> ( x G z ) ) /\ ( f ` 0 ) = ( H ` x ) ) ) ` y ) ) | 
						
							| 8 |  | cvmlift2lem10.s |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 9 |  | cvmlift2lem9.1 |  |-  ( ph -> ( X G Y ) e. M ) | 
						
							| 10 |  | cvmlift2lem9.2 |  |-  ( ph -> T e. ( S ` M ) ) | 
						
							| 11 |  | cvmlift2lem9.3 |  |-  ( ph -> U e. II ) | 
						
							| 12 |  | cvmlift2lem9.4 |  |-  ( ph -> V e. II ) | 
						
							| 13 |  | cvmlift2lem9.5 |  |-  ( ph -> ( II |`t U ) e. Conn ) | 
						
							| 14 |  | cvmlift2lem9.6 |  |-  ( ph -> ( II |`t V ) e. Conn ) | 
						
							| 15 |  | cvmlift2lem9.7 |  |-  ( ph -> X e. U ) | 
						
							| 16 |  | cvmlift2lem9.8 |  |-  ( ph -> Y e. V ) | 
						
							| 17 |  | cvmlift2lem9.9 |  |-  ( ph -> ( U X. V ) C_ ( `' G " M ) ) | 
						
							| 18 |  | cvmlift2lem9.10 |  |-  ( ph -> Z e. V ) | 
						
							| 19 |  | cvmlift2lem9.11 |  |-  ( ph -> ( K |` ( U X. { Z } ) ) e. ( ( ( II tX II ) |`t ( U X. { Z } ) ) Cn C ) ) | 
						
							| 20 |  | cvmlift2lem9.w |  |-  W = ( iota_ b e. T ( X K Y ) e. b ) | 
						
							| 21 |  | iitop |  |-  II e. Top | 
						
							| 22 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 23 | 21 21 22 22 | txunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 24 | 1 2 3 4 5 6 7 | cvmlift2lem5 |  |-  ( ph -> K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 25 | 1 2 3 4 5 6 7 | cvmlift2lem7 |  |-  ( ph -> ( F o. K ) = G ) | 
						
							| 26 | 25 3 | eqeltrd |  |-  ( ph -> ( F o. K ) e. ( ( II tX II ) Cn J ) ) | 
						
							| 27 | 21 21 | txtopi |  |-  ( II tX II ) e. Top | 
						
							| 28 | 27 | a1i |  |-  ( ph -> ( II tX II ) e. Top ) | 
						
							| 29 |  | elssuni |  |-  ( U e. II -> U C_ U. II ) | 
						
							| 30 | 29 22 | sseqtrrdi |  |-  ( U e. II -> U C_ ( 0 [,] 1 ) ) | 
						
							| 31 | 11 30 | syl |  |-  ( ph -> U C_ ( 0 [,] 1 ) ) | 
						
							| 32 | 31 15 | sseldd |  |-  ( ph -> X e. ( 0 [,] 1 ) ) | 
						
							| 33 |  | elssuni |  |-  ( V e. II -> V C_ U. II ) | 
						
							| 34 | 33 22 | sseqtrrdi |  |-  ( V e. II -> V C_ ( 0 [,] 1 ) ) | 
						
							| 35 | 12 34 | syl |  |-  ( ph -> V C_ ( 0 [,] 1 ) ) | 
						
							| 36 | 35 16 | sseldd |  |-  ( ph -> Y e. ( 0 [,] 1 ) ) | 
						
							| 37 |  | opelxpi |  |-  ( ( X e. ( 0 [,] 1 ) /\ Y e. ( 0 [,] 1 ) ) -> <. X , Y >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 38 | 32 36 37 | syl2anc |  |-  ( ph -> <. X , Y >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 39 | 24 32 36 | fovcdmd |  |-  ( ph -> ( X K Y ) e. B ) | 
						
							| 40 |  | fvco3 |  |-  ( ( K : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ <. X , Y >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( F o. K ) ` <. X , Y >. ) = ( F ` ( K ` <. X , Y >. ) ) ) | 
						
							| 41 | 24 38 40 | syl2anc |  |-  ( ph -> ( ( F o. K ) ` <. X , Y >. ) = ( F ` ( K ` <. X , Y >. ) ) ) | 
						
							| 42 | 25 | fveq1d |  |-  ( ph -> ( ( F o. K ) ` <. X , Y >. ) = ( G ` <. X , Y >. ) ) | 
						
							| 43 | 41 42 | eqtr3d |  |-  ( ph -> ( F ` ( K ` <. X , Y >. ) ) = ( G ` <. X , Y >. ) ) | 
						
							| 44 |  | df-ov |  |-  ( X K Y ) = ( K ` <. X , Y >. ) | 
						
							| 45 | 44 | fveq2i |  |-  ( F ` ( X K Y ) ) = ( F ` ( K ` <. X , Y >. ) ) | 
						
							| 46 |  | df-ov |  |-  ( X G Y ) = ( G ` <. X , Y >. ) | 
						
							| 47 | 43 45 46 | 3eqtr4g |  |-  ( ph -> ( F ` ( X K Y ) ) = ( X G Y ) ) | 
						
							| 48 | 47 9 | eqeltrd |  |-  ( ph -> ( F ` ( X K Y ) ) e. M ) | 
						
							| 49 | 8 1 20 | cvmsiota |  |-  ( ( F e. ( C CovMap J ) /\ ( T e. ( S ` M ) /\ ( X K Y ) e. B /\ ( F ` ( X K Y ) ) e. M ) ) -> ( W e. T /\ ( X K Y ) e. W ) ) | 
						
							| 50 | 2 10 39 48 49 | syl13anc |  |-  ( ph -> ( W e. T /\ ( X K Y ) e. W ) ) | 
						
							| 51 | 44 | eleq1i |  |-  ( ( X K Y ) e. W <-> ( K ` <. X , Y >. ) e. W ) | 
						
							| 52 | 51 | anbi2i |  |-  ( ( W e. T /\ ( X K Y ) e. W ) <-> ( W e. T /\ ( K ` <. X , Y >. ) e. W ) ) | 
						
							| 53 | 50 52 | sylib |  |-  ( ph -> ( W e. T /\ ( K ` <. X , Y >. ) e. W ) ) | 
						
							| 54 |  | xpss12 |  |-  ( ( U C_ ( 0 [,] 1 ) /\ V C_ ( 0 [,] 1 ) ) -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 55 | 31 35 54 | syl2anc |  |-  ( ph -> ( U X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 56 |  | snidg |  |-  ( m e. U -> m e. { m } ) | 
						
							| 57 | 56 | ad2antrl |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> m e. { m } ) | 
						
							| 58 |  | simprr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> n e. V ) | 
						
							| 59 |  | ovres |  |-  ( ( m e. { m } /\ n e. V ) -> ( m ( K |` ( { m } X. V ) ) n ) = ( m K n ) ) | 
						
							| 60 | 57 58 59 | syl2anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m ( K |` ( { m } X. V ) ) n ) = ( m K n ) ) | 
						
							| 61 |  | eqid |  |-  U. ( ( II tX II ) |`t ( { m } X. V ) ) = U. ( ( II tX II ) |`t ( { m } X. V ) ) | 
						
							| 62 | 21 | a1i |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> II e. Top ) | 
						
							| 63 |  | snex |  |-  { m } e. _V | 
						
							| 64 | 63 | a1i |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> { m } e. _V ) | 
						
							| 65 | 12 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> V e. II ) | 
						
							| 66 |  | txrest |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( { m } e. _V /\ V e. II ) ) -> ( ( II tX II ) |`t ( { m } X. V ) ) = ( ( II |`t { m } ) tX ( II |`t V ) ) ) | 
						
							| 67 | 62 62 64 65 66 | syl22anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( II tX II ) |`t ( { m } X. V ) ) = ( ( II |`t { m } ) tX ( II |`t V ) ) ) | 
						
							| 68 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 69 | 31 | sselda |  |-  ( ( ph /\ m e. U ) -> m e. ( 0 [,] 1 ) ) | 
						
							| 70 | 69 | adantrr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> m e. ( 0 [,] 1 ) ) | 
						
							| 71 |  | restsn2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ m e. ( 0 [,] 1 ) ) -> ( II |`t { m } ) = ~P { m } ) | 
						
							| 72 | 68 70 71 | sylancr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( II |`t { m } ) = ~P { m } ) | 
						
							| 73 |  | pwsn |  |-  ~P { m } = { (/) , { m } } | 
						
							| 74 |  | indisconn |  |-  { (/) , { m } } e. Conn | 
						
							| 75 | 73 74 | eqeltri |  |-  ~P { m } e. Conn | 
						
							| 76 | 72 75 | eqeltrdi |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( II |`t { m } ) e. Conn ) | 
						
							| 77 | 14 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( II |`t V ) e. Conn ) | 
						
							| 78 |  | txconn |  |-  ( ( ( II |`t { m } ) e. Conn /\ ( II |`t V ) e. Conn ) -> ( ( II |`t { m } ) tX ( II |`t V ) ) e. Conn ) | 
						
							| 79 | 76 77 78 | syl2anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( II |`t { m } ) tX ( II |`t V ) ) e. Conn ) | 
						
							| 80 | 67 79 | eqeltrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( II tX II ) |`t ( { m } X. V ) ) e. Conn ) | 
						
							| 81 | 1 2 3 4 5 6 7 | cvmlift2lem6 |  |-  ( ( ph /\ m e. ( 0 [,] 1 ) ) -> ( K |` ( { m } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) Cn C ) ) | 
						
							| 82 | 70 81 | syldan |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K |` ( { m } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) Cn C ) ) | 
						
							| 83 | 35 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> V C_ ( 0 [,] 1 ) ) | 
						
							| 84 |  | xpss2 |  |-  ( V C_ ( 0 [,] 1 ) -> ( { m } X. V ) C_ ( { m } X. ( 0 [,] 1 ) ) ) | 
						
							| 85 | 83 84 | syl |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. V ) C_ ( { m } X. ( 0 [,] 1 ) ) ) | 
						
							| 86 | 70 | snssd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> { m } C_ ( 0 [,] 1 ) ) | 
						
							| 87 |  | xpss1 |  |-  ( { m } C_ ( 0 [,] 1 ) -> ( { m } X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 88 | 86 87 | syl |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 89 | 23 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( { m } X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( { m } X. ( 0 [,] 1 ) ) = U. ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 90 | 27 88 89 | sylancr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. ( 0 [,] 1 ) ) = U. ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 91 | 85 90 | sseqtrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. V ) C_ U. ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 92 |  | eqid |  |-  U. ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) = U. ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) | 
						
							| 93 | 92 | cnrest |  |-  ( ( ( K |` ( { m } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) Cn C ) /\ ( { m } X. V ) C_ U. ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) ) -> ( ( K |` ( { m } X. ( 0 [,] 1 ) ) ) |` ( { m } X. V ) ) e. ( ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) |`t ( { m } X. V ) ) Cn C ) ) | 
						
							| 94 | 82 91 93 | syl2anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( K |` ( { m } X. ( 0 [,] 1 ) ) ) |` ( { m } X. V ) ) e. ( ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) |`t ( { m } X. V ) ) Cn C ) ) | 
						
							| 95 | 85 | resabs1d |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( K |` ( { m } X. ( 0 [,] 1 ) ) ) |` ( { m } X. V ) ) = ( K |` ( { m } X. V ) ) ) | 
						
							| 96 | 27 | a1i |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( II tX II ) e. Top ) | 
						
							| 97 |  | ovex |  |-  ( 0 [,] 1 ) e. _V | 
						
							| 98 | 63 97 | xpex |  |-  ( { m } X. ( 0 [,] 1 ) ) e. _V | 
						
							| 99 | 98 | a1i |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. ( 0 [,] 1 ) ) e. _V ) | 
						
							| 100 |  | restabs |  |-  ( ( ( II tX II ) e. Top /\ ( { m } X. V ) C_ ( { m } X. ( 0 [,] 1 ) ) /\ ( { m } X. ( 0 [,] 1 ) ) e. _V ) -> ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) |`t ( { m } X. V ) ) = ( ( II tX II ) |`t ( { m } X. V ) ) ) | 
						
							| 101 | 96 85 99 100 | syl3anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) |`t ( { m } X. V ) ) = ( ( II tX II ) |`t ( { m } X. V ) ) ) | 
						
							| 102 | 101 | oveq1d |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( ( ( II tX II ) |`t ( { m } X. ( 0 [,] 1 ) ) ) |`t ( { m } X. V ) ) Cn C ) = ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn C ) ) | 
						
							| 103 | 94 95 102 | 3eltr3d |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K |` ( { m } X. V ) ) e. ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn C ) ) | 
						
							| 104 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 105 | 2 104 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 106 | 105 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> C e. Top ) | 
						
							| 107 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 108 | 106 107 | sylib |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> C e. ( TopOn ` B ) ) | 
						
							| 109 |  | df-ima |  |-  ( K " ( { m } X. V ) ) = ran ( K |` ( { m } X. V ) ) | 
						
							| 110 |  | simprl |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> m e. U ) | 
						
							| 111 | 110 | snssd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> { m } C_ U ) | 
						
							| 112 |  | xpss1 |  |-  ( { m } C_ U -> ( { m } X. V ) C_ ( U X. V ) ) | 
						
							| 113 |  | imass2 |  |-  ( ( { m } X. V ) C_ ( U X. V ) -> ( K " ( { m } X. V ) ) C_ ( K " ( U X. V ) ) ) | 
						
							| 114 | 111 112 113 | 3syl |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K " ( { m } X. V ) ) C_ ( K " ( U X. V ) ) ) | 
						
							| 115 |  | imaco |  |-  ( ( `' K o. `' F ) " M ) = ( `' K " ( `' F " M ) ) | 
						
							| 116 |  | cnvco |  |-  `' ( F o. K ) = ( `' K o. `' F ) | 
						
							| 117 | 25 | cnveqd |  |-  ( ph -> `' ( F o. K ) = `' G ) | 
						
							| 118 | 116 117 | eqtr3id |  |-  ( ph -> ( `' K o. `' F ) = `' G ) | 
						
							| 119 | 118 | imaeq1d |  |-  ( ph -> ( ( `' K o. `' F ) " M ) = ( `' G " M ) ) | 
						
							| 120 | 115 119 | eqtr3id |  |-  ( ph -> ( `' K " ( `' F " M ) ) = ( `' G " M ) ) | 
						
							| 121 | 17 120 | sseqtrrd |  |-  ( ph -> ( U X. V ) C_ ( `' K " ( `' F " M ) ) ) | 
						
							| 122 | 24 | ffund |  |-  ( ph -> Fun K ) | 
						
							| 123 | 24 | fdmd |  |-  ( ph -> dom K = ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 124 | 55 123 | sseqtrrd |  |-  ( ph -> ( U X. V ) C_ dom K ) | 
						
							| 125 |  | funimass3 |  |-  ( ( Fun K /\ ( U X. V ) C_ dom K ) -> ( ( K " ( U X. V ) ) C_ ( `' F " M ) <-> ( U X. V ) C_ ( `' K " ( `' F " M ) ) ) ) | 
						
							| 126 | 122 124 125 | syl2anc |  |-  ( ph -> ( ( K " ( U X. V ) ) C_ ( `' F " M ) <-> ( U X. V ) C_ ( `' K " ( `' F " M ) ) ) ) | 
						
							| 127 | 121 126 | mpbird |  |-  ( ph -> ( K " ( U X. V ) ) C_ ( `' F " M ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K " ( U X. V ) ) C_ ( `' F " M ) ) | 
						
							| 129 | 114 128 | sstrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K " ( { m } X. V ) ) C_ ( `' F " M ) ) | 
						
							| 130 | 109 129 | eqsstrrid |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ran ( K |` ( { m } X. V ) ) C_ ( `' F " M ) ) | 
						
							| 131 |  | cnvimass |  |-  ( `' F " M ) C_ dom F | 
						
							| 132 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 133 | 2 132 | syl |  |-  ( ph -> F e. ( C Cn J ) ) | 
						
							| 134 |  | eqid |  |-  U. J = U. J | 
						
							| 135 | 1 134 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> U. J ) | 
						
							| 136 |  | fdm |  |-  ( F : B --> U. J -> dom F = B ) | 
						
							| 137 | 133 135 136 | 3syl |  |-  ( ph -> dom F = B ) | 
						
							| 138 | 131 137 | sseqtrid |  |-  ( ph -> ( `' F " M ) C_ B ) | 
						
							| 139 | 138 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( `' F " M ) C_ B ) | 
						
							| 140 |  | cnrest2 |  |-  ( ( C e. ( TopOn ` B ) /\ ran ( K |` ( { m } X. V ) ) C_ ( `' F " M ) /\ ( `' F " M ) C_ B ) -> ( ( K |` ( { m } X. V ) ) e. ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn C ) <-> ( K |` ( { m } X. V ) ) e. ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn ( C |`t ( `' F " M ) ) ) ) ) | 
						
							| 141 | 108 130 139 140 | syl3anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( K |` ( { m } X. V ) ) e. ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn C ) <-> ( K |` ( { m } X. V ) ) e. ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn ( C |`t ( `' F " M ) ) ) ) ) | 
						
							| 142 | 103 141 | mpbid |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K |` ( { m } X. V ) ) e. ( ( ( II tX II ) |`t ( { m } X. V ) ) Cn ( C |`t ( `' F " M ) ) ) ) | 
						
							| 143 | 8 | cvmsss |  |-  ( T e. ( S ` M ) -> T C_ C ) | 
						
							| 144 | 10 143 | syl |  |-  ( ph -> T C_ C ) | 
						
							| 145 | 50 | simpld |  |-  ( ph -> W e. T ) | 
						
							| 146 | 144 145 | sseldd |  |-  ( ph -> W e. C ) | 
						
							| 147 |  | elssuni |  |-  ( W e. T -> W C_ U. T ) | 
						
							| 148 | 145 147 | syl |  |-  ( ph -> W C_ U. T ) | 
						
							| 149 | 8 | cvmsuni |  |-  ( T e. ( S ` M ) -> U. T = ( `' F " M ) ) | 
						
							| 150 | 10 149 | syl |  |-  ( ph -> U. T = ( `' F " M ) ) | 
						
							| 151 | 148 150 | sseqtrd |  |-  ( ph -> W C_ ( `' F " M ) ) | 
						
							| 152 | 8 | cvmsrcl |  |-  ( T e. ( S ` M ) -> M e. J ) | 
						
							| 153 | 10 152 | syl |  |-  ( ph -> M e. J ) | 
						
							| 154 |  | cnima |  |-  ( ( F e. ( C Cn J ) /\ M e. J ) -> ( `' F " M ) e. C ) | 
						
							| 155 | 133 153 154 | syl2anc |  |-  ( ph -> ( `' F " M ) e. C ) | 
						
							| 156 |  | restopn2 |  |-  ( ( C e. Top /\ ( `' F " M ) e. C ) -> ( W e. ( C |`t ( `' F " M ) ) <-> ( W e. C /\ W C_ ( `' F " M ) ) ) ) | 
						
							| 157 | 105 155 156 | syl2anc |  |-  ( ph -> ( W e. ( C |`t ( `' F " M ) ) <-> ( W e. C /\ W C_ ( `' F " M ) ) ) ) | 
						
							| 158 | 146 151 157 | mpbir2and |  |-  ( ph -> W e. ( C |`t ( `' F " M ) ) ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> W e. ( C |`t ( `' F " M ) ) ) | 
						
							| 160 | 8 | cvmscld |  |-  ( ( F e. ( C CovMap J ) /\ T e. ( S ` M ) /\ W e. T ) -> W e. ( Clsd ` ( C |`t ( `' F " M ) ) ) ) | 
						
							| 161 | 2 10 145 160 | syl3anc |  |-  ( ph -> W e. ( Clsd ` ( C |`t ( `' F " M ) ) ) ) | 
						
							| 162 | 161 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> W e. ( Clsd ` ( C |`t ( `' F " M ) ) ) ) | 
						
							| 163 | 18 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> Z e. V ) | 
						
							| 164 |  | opelxpi |  |-  ( ( m e. { m } /\ Z e. V ) -> <. m , Z >. e. ( { m } X. V ) ) | 
						
							| 165 | 57 163 164 | syl2anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> <. m , Z >. e. ( { m } X. V ) ) | 
						
							| 166 | 85 88 | sstrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 167 | 23 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( { m } X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( { m } X. V ) = U. ( ( II tX II ) |`t ( { m } X. V ) ) ) | 
						
							| 168 | 27 166 167 | sylancr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( { m } X. V ) = U. ( ( II tX II ) |`t ( { m } X. V ) ) ) | 
						
							| 169 | 165 168 | eleqtrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> <. m , Z >. e. U. ( ( II tX II ) |`t ( { m } X. V ) ) ) | 
						
							| 170 |  | df-ov |  |-  ( m ( K |` ( { m } X. V ) ) Z ) = ( ( K |` ( { m } X. V ) ) ` <. m , Z >. ) | 
						
							| 171 |  | ovres |  |-  ( ( m e. { m } /\ Z e. V ) -> ( m ( K |` ( { m } X. V ) ) Z ) = ( m K Z ) ) | 
						
							| 172 | 57 163 171 | syl2anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m ( K |` ( { m } X. V ) ) Z ) = ( m K Z ) ) | 
						
							| 173 |  | snidg |  |-  ( Z e. V -> Z e. { Z } ) | 
						
							| 174 | 18 173 | syl |  |-  ( ph -> Z e. { Z } ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> Z e. { Z } ) | 
						
							| 176 |  | ovres |  |-  ( ( m e. U /\ Z e. { Z } ) -> ( m ( K |` ( U X. { Z } ) ) Z ) = ( m K Z ) ) | 
						
							| 177 | 110 175 176 | syl2anc |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m ( K |` ( U X. { Z } ) ) Z ) = ( m K Z ) ) | 
						
							| 178 | 172 177 | eqtr4d |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m ( K |` ( { m } X. V ) ) Z ) = ( m ( K |` ( U X. { Z } ) ) Z ) ) | 
						
							| 179 | 170 178 | eqtr3id |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( K |` ( { m } X. V ) ) ` <. m , Z >. ) = ( m ( K |` ( U X. { Z } ) ) Z ) ) | 
						
							| 180 |  | eqid |  |-  U. ( ( II tX II ) |`t ( U X. { Z } ) ) = U. ( ( II tX II ) |`t ( U X. { Z } ) ) | 
						
							| 181 | 21 | a1i |  |-  ( ph -> II e. Top ) | 
						
							| 182 |  | snex |  |-  { Z } e. _V | 
						
							| 183 | 182 | a1i |  |-  ( ph -> { Z } e. _V ) | 
						
							| 184 |  | txrest |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( U e. II /\ { Z } e. _V ) ) -> ( ( II tX II ) |`t ( U X. { Z } ) ) = ( ( II |`t U ) tX ( II |`t { Z } ) ) ) | 
						
							| 185 | 181 181 11 183 184 | syl22anc |  |-  ( ph -> ( ( II tX II ) |`t ( U X. { Z } ) ) = ( ( II |`t U ) tX ( II |`t { Z } ) ) ) | 
						
							| 186 | 35 18 | sseldd |  |-  ( ph -> Z e. ( 0 [,] 1 ) ) | 
						
							| 187 |  | restsn2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ Z e. ( 0 [,] 1 ) ) -> ( II |`t { Z } ) = ~P { Z } ) | 
						
							| 188 | 68 186 187 | sylancr |  |-  ( ph -> ( II |`t { Z } ) = ~P { Z } ) | 
						
							| 189 |  | pwsn |  |-  ~P { Z } = { (/) , { Z } } | 
						
							| 190 |  | indisconn |  |-  { (/) , { Z } } e. Conn | 
						
							| 191 | 189 190 | eqeltri |  |-  ~P { Z } e. Conn | 
						
							| 192 | 188 191 | eqeltrdi |  |-  ( ph -> ( II |`t { Z } ) e. Conn ) | 
						
							| 193 |  | txconn |  |-  ( ( ( II |`t U ) e. Conn /\ ( II |`t { Z } ) e. Conn ) -> ( ( II |`t U ) tX ( II |`t { Z } ) ) e. Conn ) | 
						
							| 194 | 13 192 193 | syl2anc |  |-  ( ph -> ( ( II |`t U ) tX ( II |`t { Z } ) ) e. Conn ) | 
						
							| 195 | 185 194 | eqeltrd |  |-  ( ph -> ( ( II tX II ) |`t ( U X. { Z } ) ) e. Conn ) | 
						
							| 196 | 105 107 | sylib |  |-  ( ph -> C e. ( TopOn ` B ) ) | 
						
							| 197 |  | df-ima |  |-  ( K " ( U X. { Z } ) ) = ran ( K |` ( U X. { Z } ) ) | 
						
							| 198 | 18 | snssd |  |-  ( ph -> { Z } C_ V ) | 
						
							| 199 |  | xpss2 |  |-  ( { Z } C_ V -> ( U X. { Z } ) C_ ( U X. V ) ) | 
						
							| 200 |  | imass2 |  |-  ( ( U X. { Z } ) C_ ( U X. V ) -> ( K " ( U X. { Z } ) ) C_ ( K " ( U X. V ) ) ) | 
						
							| 201 | 198 199 200 | 3syl |  |-  ( ph -> ( K " ( U X. { Z } ) ) C_ ( K " ( U X. V ) ) ) | 
						
							| 202 | 201 127 | sstrd |  |-  ( ph -> ( K " ( U X. { Z } ) ) C_ ( `' F " M ) ) | 
						
							| 203 | 197 202 | eqsstrrid |  |-  ( ph -> ran ( K |` ( U X. { Z } ) ) C_ ( `' F " M ) ) | 
						
							| 204 |  | cnrest2 |  |-  ( ( C e. ( TopOn ` B ) /\ ran ( K |` ( U X. { Z } ) ) C_ ( `' F " M ) /\ ( `' F " M ) C_ B ) -> ( ( K |` ( U X. { Z } ) ) e. ( ( ( II tX II ) |`t ( U X. { Z } ) ) Cn C ) <-> ( K |` ( U X. { Z } ) ) e. ( ( ( II tX II ) |`t ( U X. { Z } ) ) Cn ( C |`t ( `' F " M ) ) ) ) ) | 
						
							| 205 | 196 203 138 204 | syl3anc |  |-  ( ph -> ( ( K |` ( U X. { Z } ) ) e. ( ( ( II tX II ) |`t ( U X. { Z } ) ) Cn C ) <-> ( K |` ( U X. { Z } ) ) e. ( ( ( II tX II ) |`t ( U X. { Z } ) ) Cn ( C |`t ( `' F " M ) ) ) ) ) | 
						
							| 206 | 19 205 | mpbid |  |-  ( ph -> ( K |` ( U X. { Z } ) ) e. ( ( ( II tX II ) |`t ( U X. { Z } ) ) Cn ( C |`t ( `' F " M ) ) ) ) | 
						
							| 207 |  | opelxpi |  |-  ( ( X e. U /\ Z e. { Z } ) -> <. X , Z >. e. ( U X. { Z } ) ) | 
						
							| 208 | 15 174 207 | syl2anc |  |-  ( ph -> <. X , Z >. e. ( U X. { Z } ) ) | 
						
							| 209 | 186 | snssd |  |-  ( ph -> { Z } C_ ( 0 [,] 1 ) ) | 
						
							| 210 |  | xpss12 |  |-  ( ( U C_ ( 0 [,] 1 ) /\ { Z } C_ ( 0 [,] 1 ) ) -> ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 211 | 31 209 210 | syl2anc |  |-  ( ph -> ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 212 | 23 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( U X. { Z } ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( U X. { Z } ) = U. ( ( II tX II ) |`t ( U X. { Z } ) ) ) | 
						
							| 213 | 27 211 212 | sylancr |  |-  ( ph -> ( U X. { Z } ) = U. ( ( II tX II ) |`t ( U X. { Z } ) ) ) | 
						
							| 214 | 208 213 | eleqtrd |  |-  ( ph -> <. X , Z >. e. U. ( ( II tX II ) |`t ( U X. { Z } ) ) ) | 
						
							| 215 |  | df-ov |  |-  ( X ( K |` ( U X. { Z } ) ) Z ) = ( ( K |` ( U X. { Z } ) ) ` <. X , Z >. ) | 
						
							| 216 |  | ovres |  |-  ( ( X e. U /\ Z e. { Z } ) -> ( X ( K |` ( U X. { Z } ) ) Z ) = ( X K Z ) ) | 
						
							| 217 | 15 174 216 | syl2anc |  |-  ( ph -> ( X ( K |` ( U X. { Z } ) ) Z ) = ( X K Z ) ) | 
						
							| 218 |  | snidg |  |-  ( X e. U -> X e. { X } ) | 
						
							| 219 | 15 218 | syl |  |-  ( ph -> X e. { X } ) | 
						
							| 220 |  | ovres |  |-  ( ( X e. { X } /\ Z e. V ) -> ( X ( K |` ( { X } X. V ) ) Z ) = ( X K Z ) ) | 
						
							| 221 | 219 18 220 | syl2anc |  |-  ( ph -> ( X ( K |` ( { X } X. V ) ) Z ) = ( X K Z ) ) | 
						
							| 222 | 217 221 | eqtr4d |  |-  ( ph -> ( X ( K |` ( U X. { Z } ) ) Z ) = ( X ( K |` ( { X } X. V ) ) Z ) ) | 
						
							| 223 | 215 222 | eqtr3id |  |-  ( ph -> ( ( K |` ( U X. { Z } ) ) ` <. X , Z >. ) = ( X ( K |` ( { X } X. V ) ) Z ) ) | 
						
							| 224 |  | eqid |  |-  U. ( ( II tX II ) |`t ( { X } X. V ) ) = U. ( ( II tX II ) |`t ( { X } X. V ) ) | 
						
							| 225 |  | snex |  |-  { X } e. _V | 
						
							| 226 | 225 | a1i |  |-  ( ph -> { X } e. _V ) | 
						
							| 227 |  | txrest |  |-  ( ( ( II e. Top /\ II e. Top ) /\ ( { X } e. _V /\ V e. II ) ) -> ( ( II tX II ) |`t ( { X } X. V ) ) = ( ( II |`t { X } ) tX ( II |`t V ) ) ) | 
						
							| 228 | 181 181 226 12 227 | syl22anc |  |-  ( ph -> ( ( II tX II ) |`t ( { X } X. V ) ) = ( ( II |`t { X } ) tX ( II |`t V ) ) ) | 
						
							| 229 |  | restsn2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ X e. ( 0 [,] 1 ) ) -> ( II |`t { X } ) = ~P { X } ) | 
						
							| 230 | 68 32 229 | sylancr |  |-  ( ph -> ( II |`t { X } ) = ~P { X } ) | 
						
							| 231 |  | pwsn |  |-  ~P { X } = { (/) , { X } } | 
						
							| 232 |  | indisconn |  |-  { (/) , { X } } e. Conn | 
						
							| 233 | 231 232 | eqeltri |  |-  ~P { X } e. Conn | 
						
							| 234 | 230 233 | eqeltrdi |  |-  ( ph -> ( II |`t { X } ) e. Conn ) | 
						
							| 235 |  | txconn |  |-  ( ( ( II |`t { X } ) e. Conn /\ ( II |`t V ) e. Conn ) -> ( ( II |`t { X } ) tX ( II |`t V ) ) e. Conn ) | 
						
							| 236 | 234 14 235 | syl2anc |  |-  ( ph -> ( ( II |`t { X } ) tX ( II |`t V ) ) e. Conn ) | 
						
							| 237 | 228 236 | eqeltrd |  |-  ( ph -> ( ( II tX II ) |`t ( { X } X. V ) ) e. Conn ) | 
						
							| 238 | 1 2 3 4 5 6 7 | cvmlift2lem6 |  |-  ( ( ph /\ X e. ( 0 [,] 1 ) ) -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) ) | 
						
							| 239 | 32 238 | mpdan |  |-  ( ph -> ( K |` ( { X } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) ) | 
						
							| 240 |  | xpss2 |  |-  ( V C_ ( 0 [,] 1 ) -> ( { X } X. V ) C_ ( { X } X. ( 0 [,] 1 ) ) ) | 
						
							| 241 | 12 34 240 | 3syl |  |-  ( ph -> ( { X } X. V ) C_ ( { X } X. ( 0 [,] 1 ) ) ) | 
						
							| 242 | 32 | snssd |  |-  ( ph -> { X } C_ ( 0 [,] 1 ) ) | 
						
							| 243 |  | xpss1 |  |-  ( { X } C_ ( 0 [,] 1 ) -> ( { X } X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 244 | 242 243 | syl |  |-  ( ph -> ( { X } X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 245 | 23 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( { X } X. ( 0 [,] 1 ) ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( { X } X. ( 0 [,] 1 ) ) = U. ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 246 | 27 244 245 | sylancr |  |-  ( ph -> ( { X } X. ( 0 [,] 1 ) ) = U. ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 247 | 241 246 | sseqtrd |  |-  ( ph -> ( { X } X. V ) C_ U. ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) ) | 
						
							| 248 |  | eqid |  |-  U. ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) = U. ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) | 
						
							| 249 | 248 | cnrest |  |-  ( ( ( K |` ( { X } X. ( 0 [,] 1 ) ) ) e. ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) Cn C ) /\ ( { X } X. V ) C_ U. ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) ) -> ( ( K |` ( { X } X. ( 0 [,] 1 ) ) ) |` ( { X } X. V ) ) e. ( ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) |`t ( { X } X. V ) ) Cn C ) ) | 
						
							| 250 | 239 247 249 | syl2anc |  |-  ( ph -> ( ( K |` ( { X } X. ( 0 [,] 1 ) ) ) |` ( { X } X. V ) ) e. ( ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) |`t ( { X } X. V ) ) Cn C ) ) | 
						
							| 251 | 241 | resabs1d |  |-  ( ph -> ( ( K |` ( { X } X. ( 0 [,] 1 ) ) ) |` ( { X } X. V ) ) = ( K |` ( { X } X. V ) ) ) | 
						
							| 252 | 225 97 | xpex |  |-  ( { X } X. ( 0 [,] 1 ) ) e. _V | 
						
							| 253 | 252 | a1i |  |-  ( ph -> ( { X } X. ( 0 [,] 1 ) ) e. _V ) | 
						
							| 254 |  | restabs |  |-  ( ( ( II tX II ) e. Top /\ ( { X } X. V ) C_ ( { X } X. ( 0 [,] 1 ) ) /\ ( { X } X. ( 0 [,] 1 ) ) e. _V ) -> ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) |`t ( { X } X. V ) ) = ( ( II tX II ) |`t ( { X } X. V ) ) ) | 
						
							| 255 | 28 241 253 254 | syl3anc |  |-  ( ph -> ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) |`t ( { X } X. V ) ) = ( ( II tX II ) |`t ( { X } X. V ) ) ) | 
						
							| 256 | 255 | oveq1d |  |-  ( ph -> ( ( ( ( II tX II ) |`t ( { X } X. ( 0 [,] 1 ) ) ) |`t ( { X } X. V ) ) Cn C ) = ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn C ) ) | 
						
							| 257 | 250 251 256 | 3eltr3d |  |-  ( ph -> ( K |` ( { X } X. V ) ) e. ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn C ) ) | 
						
							| 258 |  | df-ima |  |-  ( K " ( { X } X. V ) ) = ran ( K |` ( { X } X. V ) ) | 
						
							| 259 | 15 | snssd |  |-  ( ph -> { X } C_ U ) | 
						
							| 260 |  | xpss1 |  |-  ( { X } C_ U -> ( { X } X. V ) C_ ( U X. V ) ) | 
						
							| 261 |  | imass2 |  |-  ( ( { X } X. V ) C_ ( U X. V ) -> ( K " ( { X } X. V ) ) C_ ( K " ( U X. V ) ) ) | 
						
							| 262 | 259 260 261 | 3syl |  |-  ( ph -> ( K " ( { X } X. V ) ) C_ ( K " ( U X. V ) ) ) | 
						
							| 263 | 262 127 | sstrd |  |-  ( ph -> ( K " ( { X } X. V ) ) C_ ( `' F " M ) ) | 
						
							| 264 | 258 263 | eqsstrrid |  |-  ( ph -> ran ( K |` ( { X } X. V ) ) C_ ( `' F " M ) ) | 
						
							| 265 |  | cnrest2 |  |-  ( ( C e. ( TopOn ` B ) /\ ran ( K |` ( { X } X. V ) ) C_ ( `' F " M ) /\ ( `' F " M ) C_ B ) -> ( ( K |` ( { X } X. V ) ) e. ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn C ) <-> ( K |` ( { X } X. V ) ) e. ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn ( C |`t ( `' F " M ) ) ) ) ) | 
						
							| 266 | 196 264 138 265 | syl3anc |  |-  ( ph -> ( ( K |` ( { X } X. V ) ) e. ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn C ) <-> ( K |` ( { X } X. V ) ) e. ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn ( C |`t ( `' F " M ) ) ) ) ) | 
						
							| 267 | 257 266 | mpbid |  |-  ( ph -> ( K |` ( { X } X. V ) ) e. ( ( ( II tX II ) |`t ( { X } X. V ) ) Cn ( C |`t ( `' F " M ) ) ) ) | 
						
							| 268 |  | opelxpi |  |-  ( ( X e. { X } /\ Y e. V ) -> <. X , Y >. e. ( { X } X. V ) ) | 
						
							| 269 | 219 16 268 | syl2anc |  |-  ( ph -> <. X , Y >. e. ( { X } X. V ) ) | 
						
							| 270 | 259 260 | syl |  |-  ( ph -> ( { X } X. V ) C_ ( U X. V ) ) | 
						
							| 271 | 270 55 | sstrd |  |-  ( ph -> ( { X } X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 272 | 23 | restuni |  |-  ( ( ( II tX II ) e. Top /\ ( { X } X. V ) C_ ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( { X } X. V ) = U. ( ( II tX II ) |`t ( { X } X. V ) ) ) | 
						
							| 273 | 27 271 272 | sylancr |  |-  ( ph -> ( { X } X. V ) = U. ( ( II tX II ) |`t ( { X } X. V ) ) ) | 
						
							| 274 | 269 273 | eleqtrd |  |-  ( ph -> <. X , Y >. e. U. ( ( II tX II ) |`t ( { X } X. V ) ) ) | 
						
							| 275 |  | df-ov |  |-  ( X ( K |` ( { X } X. V ) ) Y ) = ( ( K |` ( { X } X. V ) ) ` <. X , Y >. ) | 
						
							| 276 |  | ovres |  |-  ( ( X e. { X } /\ Y e. V ) -> ( X ( K |` ( { X } X. V ) ) Y ) = ( X K Y ) ) | 
						
							| 277 | 219 16 276 | syl2anc |  |-  ( ph -> ( X ( K |` ( { X } X. V ) ) Y ) = ( X K Y ) ) | 
						
							| 278 | 275 277 | eqtr3id |  |-  ( ph -> ( ( K |` ( { X } X. V ) ) ` <. X , Y >. ) = ( X K Y ) ) | 
						
							| 279 | 50 | simprd |  |-  ( ph -> ( X K Y ) e. W ) | 
						
							| 280 | 278 279 | eqeltrd |  |-  ( ph -> ( ( K |` ( { X } X. V ) ) ` <. X , Y >. ) e. W ) | 
						
							| 281 | 224 237 267 158 161 274 280 | conncn |  |-  ( ph -> ( K |` ( { X } X. V ) ) : U. ( ( II tX II ) |`t ( { X } X. V ) ) --> W ) | 
						
							| 282 | 273 | feq2d |  |-  ( ph -> ( ( K |` ( { X } X. V ) ) : ( { X } X. V ) --> W <-> ( K |` ( { X } X. V ) ) : U. ( ( II tX II ) |`t ( { X } X. V ) ) --> W ) ) | 
						
							| 283 | 281 282 | mpbird |  |-  ( ph -> ( K |` ( { X } X. V ) ) : ( { X } X. V ) --> W ) | 
						
							| 284 | 283 219 18 | fovcdmd |  |-  ( ph -> ( X ( K |` ( { X } X. V ) ) Z ) e. W ) | 
						
							| 285 | 223 284 | eqeltrd |  |-  ( ph -> ( ( K |` ( U X. { Z } ) ) ` <. X , Z >. ) e. W ) | 
						
							| 286 | 180 195 206 158 161 214 285 | conncn |  |-  ( ph -> ( K |` ( U X. { Z } ) ) : U. ( ( II tX II ) |`t ( U X. { Z } ) ) --> W ) | 
						
							| 287 | 213 | feq2d |  |-  ( ph -> ( ( K |` ( U X. { Z } ) ) : ( U X. { Z } ) --> W <-> ( K |` ( U X. { Z } ) ) : U. ( ( II tX II ) |`t ( U X. { Z } ) ) --> W ) ) | 
						
							| 288 | 286 287 | mpbird |  |-  ( ph -> ( K |` ( U X. { Z } ) ) : ( U X. { Z } ) --> W ) | 
						
							| 289 | 288 | adantr |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K |` ( U X. { Z } ) ) : ( U X. { Z } ) --> W ) | 
						
							| 290 | 289 110 175 | fovcdmd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m ( K |` ( U X. { Z } ) ) Z ) e. W ) | 
						
							| 291 | 179 290 | eqeltrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( K |` ( { m } X. V ) ) ` <. m , Z >. ) e. W ) | 
						
							| 292 | 61 80 142 159 162 169 291 | conncn |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K |` ( { m } X. V ) ) : U. ( ( II tX II ) |`t ( { m } X. V ) ) --> W ) | 
						
							| 293 | 168 | feq2d |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( ( K |` ( { m } X. V ) ) : ( { m } X. V ) --> W <-> ( K |` ( { m } X. V ) ) : U. ( ( II tX II ) |`t ( { m } X. V ) ) --> W ) ) | 
						
							| 294 | 292 293 | mpbird |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( K |` ( { m } X. V ) ) : ( { m } X. V ) --> W ) | 
						
							| 295 | 294 57 58 | fovcdmd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m ( K |` ( { m } X. V ) ) n ) e. W ) | 
						
							| 296 | 60 295 | eqeltrrd |  |-  ( ( ph /\ ( m e. U /\ n e. V ) ) -> ( m K n ) e. W ) | 
						
							| 297 | 296 | ralrimivva |  |-  ( ph -> A. m e. U A. n e. V ( m K n ) e. W ) | 
						
							| 298 |  | funimassov |  |-  ( ( Fun K /\ ( U X. V ) C_ dom K ) -> ( ( K " ( U X. V ) ) C_ W <-> A. m e. U A. n e. V ( m K n ) e. W ) ) | 
						
							| 299 | 122 124 298 | syl2anc |  |-  ( ph -> ( ( K " ( U X. V ) ) C_ W <-> A. m e. U A. n e. V ( m K n ) e. W ) ) | 
						
							| 300 | 297 299 | mpbird |  |-  ( ph -> ( K " ( U X. V ) ) C_ W ) | 
						
							| 301 | 1 23 8 2 24 26 28 38 10 53 55 300 | cvmlift2lem9a |  |-  ( ph -> ( K |` ( U X. V ) ) e. ( ( ( II tX II ) |`t ( U X. V ) ) Cn C ) ) |