| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmlift2.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 3 |
|
cvmlift2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 4 |
|
cvmlift2.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 5 |
|
cvmlift2.i |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 0 𝐺 0 ) ) |
| 6 |
|
cvmlift2.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑧 𝐺 0 ) ) ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 7 |
|
cvmlift2.k |
⊢ 𝐾 = ( 𝑥 ∈ ( 0 [,] 1 ) , 𝑦 ∈ ( 0 [,] 1 ) ↦ ( ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝑥 𝐺 𝑧 ) ) ∧ ( 𝑓 ‘ 0 ) = ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) |
| 8 |
|
cvmlift2lem10.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
| 9 |
|
cvmlift2lem9.1 |
⊢ ( 𝜑 → ( 𝑋 𝐺 𝑌 ) ∈ 𝑀 ) |
| 10 |
|
cvmlift2lem9.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑆 ‘ 𝑀 ) ) |
| 11 |
|
cvmlift2lem9.3 |
⊢ ( 𝜑 → 𝑈 ∈ II ) |
| 12 |
|
cvmlift2lem9.4 |
⊢ ( 𝜑 → 𝑉 ∈ II ) |
| 13 |
|
cvmlift2lem9.5 |
⊢ ( 𝜑 → ( II ↾t 𝑈 ) ∈ Conn ) |
| 14 |
|
cvmlift2lem9.6 |
⊢ ( 𝜑 → ( II ↾t 𝑉 ) ∈ Conn ) |
| 15 |
|
cvmlift2lem9.7 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) |
| 16 |
|
cvmlift2lem9.8 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 17 |
|
cvmlift2lem9.9 |
⊢ ( 𝜑 → ( 𝑈 × 𝑉 ) ⊆ ( ◡ 𝐺 “ 𝑀 ) ) |
| 18 |
|
cvmlift2lem9.10 |
⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) |
| 19 |
|
cvmlift2lem9.11 |
⊢ ( 𝜑 → ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) Cn 𝐶 ) ) |
| 20 |
|
cvmlift2lem9.w |
⊢ 𝑊 = ( ℩ 𝑏 ∈ 𝑇 ( 𝑋 𝐾 𝑌 ) ∈ 𝑏 ) |
| 21 |
|
iitop |
⊢ II ∈ Top |
| 22 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 23 |
21 21 22 22
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
| 24 |
1 2 3 4 5 6 7
|
cvmlift2lem5 |
⊢ ( 𝜑 → 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
| 25 |
1 2 3 4 5 6 7
|
cvmlift2lem7 |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐾 ) = 𝐺 ) |
| 26 |
25 3
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐾 ) ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
| 27 |
21 21
|
txtopi |
⊢ ( II ×t II ) ∈ Top |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ( II ×t II ) ∈ Top ) |
| 29 |
|
elssuni |
⊢ ( 𝑈 ∈ II → 𝑈 ⊆ ∪ II ) |
| 30 |
29 22
|
sseqtrrdi |
⊢ ( 𝑈 ∈ II → 𝑈 ⊆ ( 0 [,] 1 ) ) |
| 31 |
11 30
|
syl |
⊢ ( 𝜑 → 𝑈 ⊆ ( 0 [,] 1 ) ) |
| 32 |
31 15
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 [,] 1 ) ) |
| 33 |
|
elssuni |
⊢ ( 𝑉 ∈ II → 𝑉 ⊆ ∪ II ) |
| 34 |
33 22
|
sseqtrrdi |
⊢ ( 𝑉 ∈ II → 𝑉 ⊆ ( 0 [,] 1 ) ) |
| 35 |
12 34
|
syl |
⊢ ( 𝜑 → 𝑉 ⊆ ( 0 [,] 1 ) ) |
| 36 |
35 16
|
sseldd |
⊢ ( 𝜑 → 𝑌 ∈ ( 0 [,] 1 ) ) |
| 37 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ ( 0 [,] 1 ) ∧ 𝑌 ∈ ( 0 [,] 1 ) ) → 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 38 |
32 36 37
|
syl2anc |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 39 |
24 32 36
|
fovcdmd |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) ∈ 𝐵 ) |
| 40 |
|
fvco3 |
⊢ ( ( 𝐾 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 𝑋 , 𝑌 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐾 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
| 41 |
24 38 40
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐾 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ) ) |
| 42 |
25
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐾 ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 43 |
41 42
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ) = ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 44 |
|
df-ov |
⊢ ( 𝑋 𝐾 𝑌 ) = ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 45 |
44
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) ) = ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 46 |
|
df-ov |
⊢ ( 𝑋 𝐺 𝑌 ) = ( 𝐺 ‘ 〈 𝑋 , 𝑌 〉 ) |
| 47 |
43 45 46
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) ) = ( 𝑋 𝐺 𝑌 ) ) |
| 48 |
47 9
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) ) ∈ 𝑀 ) |
| 49 |
8 1 20
|
cvmsiota |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( 𝑇 ∈ ( 𝑆 ‘ 𝑀 ) ∧ ( 𝑋 𝐾 𝑌 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) ) ∈ 𝑀 ) ) → ( 𝑊 ∈ 𝑇 ∧ ( 𝑋 𝐾 𝑌 ) ∈ 𝑊 ) ) |
| 50 |
2 10 39 48 49
|
syl13anc |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝑇 ∧ ( 𝑋 𝐾 𝑌 ) ∈ 𝑊 ) ) |
| 51 |
44
|
eleq1i |
⊢ ( ( 𝑋 𝐾 𝑌 ) ∈ 𝑊 ↔ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑊 ) |
| 52 |
51
|
anbi2i |
⊢ ( ( 𝑊 ∈ 𝑇 ∧ ( 𝑋 𝐾 𝑌 ) ∈ 𝑊 ) ↔ ( 𝑊 ∈ 𝑇 ∧ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑊 ) ) |
| 53 |
50 52
|
sylib |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝑇 ∧ ( 𝐾 ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑊 ) ) |
| 54 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ ( 0 [,] 1 ) ∧ 𝑉 ⊆ ( 0 [,] 1 ) ) → ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 55 |
31 35 54
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 56 |
|
snidg |
⊢ ( 𝑚 ∈ 𝑈 → 𝑚 ∈ { 𝑚 } ) |
| 57 |
56
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑚 ∈ { 𝑚 } ) |
| 58 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑛 ∈ 𝑉 ) |
| 59 |
|
ovres |
⊢ ( ( 𝑚 ∈ { 𝑚 } ∧ 𝑛 ∈ 𝑉 ) → ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑛 ) = ( 𝑚 𝐾 𝑛 ) ) |
| 60 |
57 58 59
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑛 ) = ( 𝑚 𝐾 𝑛 ) ) |
| 61 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) |
| 62 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → II ∈ Top ) |
| 63 |
|
snex |
⊢ { 𝑚 } ∈ V |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → { 𝑚 } ∈ V ) |
| 65 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑉 ∈ II ) |
| 66 |
|
txrest |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( { 𝑚 } ∈ V ∧ 𝑉 ∈ II ) ) → ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) = ( ( II ↾t { 𝑚 } ) ×t ( II ↾t 𝑉 ) ) ) |
| 67 |
62 62 64 65 66
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) = ( ( II ↾t { 𝑚 } ) ×t ( II ↾t 𝑉 ) ) ) |
| 68 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 69 |
31
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑈 ) → 𝑚 ∈ ( 0 [,] 1 ) ) |
| 70 |
69
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑚 ∈ ( 0 [,] 1 ) ) |
| 71 |
|
restsn2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝑚 ∈ ( 0 [,] 1 ) ) → ( II ↾t { 𝑚 } ) = 𝒫 { 𝑚 } ) |
| 72 |
68 70 71
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( II ↾t { 𝑚 } ) = 𝒫 { 𝑚 } ) |
| 73 |
|
pwsn |
⊢ 𝒫 { 𝑚 } = { ∅ , { 𝑚 } } |
| 74 |
|
indisconn |
⊢ { ∅ , { 𝑚 } } ∈ Conn |
| 75 |
73 74
|
eqeltri |
⊢ 𝒫 { 𝑚 } ∈ Conn |
| 76 |
72 75
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( II ↾t { 𝑚 } ) ∈ Conn ) |
| 77 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( II ↾t 𝑉 ) ∈ Conn ) |
| 78 |
|
txconn |
⊢ ( ( ( II ↾t { 𝑚 } ) ∈ Conn ∧ ( II ↾t 𝑉 ) ∈ Conn ) → ( ( II ↾t { 𝑚 } ) ×t ( II ↾t 𝑉 ) ) ∈ Conn ) |
| 79 |
76 77 78
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( II ↾t { 𝑚 } ) ×t ( II ↾t 𝑉 ) ) ∈ Conn ) |
| 80 |
67 79
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ∈ Conn ) |
| 81 |
1 2 3 4 5 6 7
|
cvmlift2lem6 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 0 [,] 1 ) ) → ( 𝐾 ↾ ( { 𝑚 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |
| 82 |
70 81
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 ↾ ( { 𝑚 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |
| 83 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑉 ⊆ ( 0 [,] 1 ) ) |
| 84 |
|
xpss2 |
⊢ ( 𝑉 ⊆ ( 0 [,] 1 ) → ( { 𝑚 } × 𝑉 ) ⊆ ( { 𝑚 } × ( 0 [,] 1 ) ) ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × 𝑉 ) ⊆ ( { 𝑚 } × ( 0 [,] 1 ) ) ) |
| 86 |
70
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → { 𝑚 } ⊆ ( 0 [,] 1 ) ) |
| 87 |
|
xpss1 |
⊢ ( { 𝑚 } ⊆ ( 0 [,] 1 ) → ( { 𝑚 } × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 88 |
86 87
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 89 |
23
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( { 𝑚 } × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( { 𝑚 } × ( 0 [,] 1 ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ) |
| 90 |
27 88 89
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × ( 0 [,] 1 ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ) |
| 91 |
85 90
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × 𝑉 ) ⊆ ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ) |
| 92 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) |
| 93 |
92
|
cnrest |
⊢ ( ( ( 𝐾 ↾ ( { 𝑚 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ∧ ( { 𝑚 } × 𝑉 ) ⊆ ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 94 |
82 91 93
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 95 |
85
|
resabs1d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾ ( { 𝑚 } × 𝑉 ) ) = ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ) |
| 96 |
27
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( II ×t II ) ∈ Top ) |
| 97 |
|
ovex |
⊢ ( 0 [,] 1 ) ∈ V |
| 98 |
63 97
|
xpex |
⊢ ( { 𝑚 } × ( 0 [,] 1 ) ) ∈ V |
| 99 |
98
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × ( 0 [,] 1 ) ) ∈ V ) |
| 100 |
|
restabs |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( { 𝑚 } × 𝑉 ) ⊆ ( { 𝑚 } × ( 0 [,] 1 ) ) ∧ ( { 𝑚 } × ( 0 [,] 1 ) ) ∈ V ) → ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑚 } × 𝑉 ) ) = ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ) |
| 101 |
96 85 99 100
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑚 } × 𝑉 ) ) = ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ) |
| 102 |
101
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( ( ( II ×t II ) ↾t ( { 𝑚 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) = ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 103 |
94 95 102
|
3eltr3d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 104 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
| 105 |
2 104
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝐶 ∈ Top ) |
| 107 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 108 |
106 107
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 109 |
|
df-ima |
⊢ ( 𝐾 “ ( { 𝑚 } × 𝑉 ) ) = ran ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) |
| 110 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑚 ∈ 𝑈 ) |
| 111 |
110
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → { 𝑚 } ⊆ 𝑈 ) |
| 112 |
|
xpss1 |
⊢ ( { 𝑚 } ⊆ 𝑈 → ( { 𝑚 } × 𝑉 ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 113 |
|
imass2 |
⊢ ( ( { 𝑚 } × 𝑉 ) ⊆ ( 𝑈 × 𝑉 ) → ( 𝐾 “ ( { 𝑚 } × 𝑉 ) ) ⊆ ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ) |
| 114 |
111 112 113
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 “ ( { 𝑚 } × 𝑉 ) ) ⊆ ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ) |
| 115 |
|
imaco |
⊢ ( ( ◡ 𝐾 ∘ ◡ 𝐹 ) “ 𝑀 ) = ( ◡ 𝐾 “ ( ◡ 𝐹 “ 𝑀 ) ) |
| 116 |
|
cnvco |
⊢ ◡ ( 𝐹 ∘ 𝐾 ) = ( ◡ 𝐾 ∘ ◡ 𝐹 ) |
| 117 |
25
|
cnveqd |
⊢ ( 𝜑 → ◡ ( 𝐹 ∘ 𝐾 ) = ◡ 𝐺 ) |
| 118 |
116 117
|
eqtr3id |
⊢ ( 𝜑 → ( ◡ 𝐾 ∘ ◡ 𝐹 ) = ◡ 𝐺 ) |
| 119 |
118
|
imaeq1d |
⊢ ( 𝜑 → ( ( ◡ 𝐾 ∘ ◡ 𝐹 ) “ 𝑀 ) = ( ◡ 𝐺 “ 𝑀 ) ) |
| 120 |
115 119
|
eqtr3id |
⊢ ( 𝜑 → ( ◡ 𝐾 “ ( ◡ 𝐹 “ 𝑀 ) ) = ( ◡ 𝐺 “ 𝑀 ) ) |
| 121 |
17 120
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑈 × 𝑉 ) ⊆ ( ◡ 𝐾 “ ( ◡ 𝐹 “ 𝑀 ) ) ) |
| 122 |
24
|
ffund |
⊢ ( 𝜑 → Fun 𝐾 ) |
| 123 |
24
|
fdmd |
⊢ ( 𝜑 → dom 𝐾 = ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 124 |
55 123
|
sseqtrrd |
⊢ ( 𝜑 → ( 𝑈 × 𝑉 ) ⊆ dom 𝐾 ) |
| 125 |
|
funimass3 |
⊢ ( ( Fun 𝐾 ∧ ( 𝑈 × 𝑉 ) ⊆ dom 𝐾 ) → ( ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ↔ ( 𝑈 × 𝑉 ) ⊆ ( ◡ 𝐾 “ ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 126 |
122 124 125
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ↔ ( 𝑈 × 𝑉 ) ⊆ ( ◡ 𝐾 “ ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 127 |
121 126
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 128 |
127
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 129 |
114 128
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 “ ( { 𝑚 } × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 130 |
109 129
|
eqsstrrid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ran ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 131 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑀 ) ⊆ dom 𝐹 |
| 132 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 133 |
2 132
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 134 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 135 |
1 134
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
| 136 |
|
fdm |
⊢ ( 𝐹 : 𝐵 ⟶ ∪ 𝐽 → dom 𝐹 = 𝐵 ) |
| 137 |
133 135 136
|
3syl |
⊢ ( 𝜑 → dom 𝐹 = 𝐵 ) |
| 138 |
131 137
|
sseqtrid |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑀 ) ⊆ 𝐵 ) |
| 139 |
138
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ◡ 𝐹 “ 𝑀 ) ⊆ 𝐵 ) |
| 140 |
|
cnrest2 |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ran ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ∧ ( ◡ 𝐹 “ 𝑀 ) ⊆ 𝐵 ) → ( ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) ) |
| 141 |
108 130 139 140
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) ) |
| 142 |
103 141
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 143 |
8
|
cvmsss |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑀 ) → 𝑇 ⊆ 𝐶 ) |
| 144 |
10 143
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ 𝐶 ) |
| 145 |
50
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ 𝑇 ) |
| 146 |
144 145
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
| 147 |
|
elssuni |
⊢ ( 𝑊 ∈ 𝑇 → 𝑊 ⊆ ∪ 𝑇 ) |
| 148 |
145 147
|
syl |
⊢ ( 𝜑 → 𝑊 ⊆ ∪ 𝑇 ) |
| 149 |
8
|
cvmsuni |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑀 ) → ∪ 𝑇 = ( ◡ 𝐹 “ 𝑀 ) ) |
| 150 |
10 149
|
syl |
⊢ ( 𝜑 → ∪ 𝑇 = ( ◡ 𝐹 “ 𝑀 ) ) |
| 151 |
148 150
|
sseqtrd |
⊢ ( 𝜑 → 𝑊 ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 152 |
8
|
cvmsrcl |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝑀 ) → 𝑀 ∈ 𝐽 ) |
| 153 |
10 152
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ 𝐽 ) |
| 154 |
|
cnima |
⊢ ( ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ∧ 𝑀 ∈ 𝐽 ) → ( ◡ 𝐹 “ 𝑀 ) ∈ 𝐶 ) |
| 155 |
133 153 154
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑀 ) ∈ 𝐶 ) |
| 156 |
|
restopn2 |
⊢ ( ( 𝐶 ∈ Top ∧ ( ◡ 𝐹 “ 𝑀 ) ∈ 𝐶 ) → ( 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ↔ ( 𝑊 ∈ 𝐶 ∧ 𝑊 ⊆ ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 157 |
105 155 156
|
syl2anc |
⊢ ( 𝜑 → ( 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ↔ ( 𝑊 ∈ 𝐶 ∧ 𝑊 ⊆ ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 158 |
146 151 157
|
mpbir2and |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑊 ∈ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) |
| 160 |
8
|
cvmscld |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝑀 ) ∧ 𝑊 ∈ 𝑇 ) → 𝑊 ∈ ( Clsd ‘ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 161 |
2 10 145 160
|
syl3anc |
⊢ ( 𝜑 → 𝑊 ∈ ( Clsd ‘ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑊 ∈ ( Clsd ‘ ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 163 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑍 ∈ 𝑉 ) |
| 164 |
|
opelxpi |
⊢ ( ( 𝑚 ∈ { 𝑚 } ∧ 𝑍 ∈ 𝑉 ) → 〈 𝑚 , 𝑍 〉 ∈ ( { 𝑚 } × 𝑉 ) ) |
| 165 |
57 163 164
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 〈 𝑚 , 𝑍 〉 ∈ ( { 𝑚 } × 𝑉 ) ) |
| 166 |
85 88
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 167 |
23
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( { 𝑚 } × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( { 𝑚 } × 𝑉 ) = ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ) |
| 168 |
27 166 167
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( { 𝑚 } × 𝑉 ) = ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ) |
| 169 |
165 168
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 〈 𝑚 , 𝑍 〉 ∈ ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ) |
| 170 |
|
df-ov |
⊢ ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑍 ) = ( ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ‘ 〈 𝑚 , 𝑍 〉 ) |
| 171 |
|
ovres |
⊢ ( ( 𝑚 ∈ { 𝑚 } ∧ 𝑍 ∈ 𝑉 ) → ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑍 ) = ( 𝑚 𝐾 𝑍 ) ) |
| 172 |
57 163 171
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑍 ) = ( 𝑚 𝐾 𝑍 ) ) |
| 173 |
|
snidg |
⊢ ( 𝑍 ∈ 𝑉 → 𝑍 ∈ { 𝑍 } ) |
| 174 |
18 173
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ { 𝑍 } ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → 𝑍 ∈ { 𝑍 } ) |
| 176 |
|
ovres |
⊢ ( ( 𝑚 ∈ 𝑈 ∧ 𝑍 ∈ { 𝑍 } ) → ( 𝑚 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) = ( 𝑚 𝐾 𝑍 ) ) |
| 177 |
110 175 176
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) = ( 𝑚 𝐾 𝑍 ) ) |
| 178 |
172 177
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑍 ) = ( 𝑚 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) ) |
| 179 |
170 178
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ‘ 〈 𝑚 , 𝑍 〉 ) = ( 𝑚 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) ) |
| 180 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) = ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) |
| 181 |
21
|
a1i |
⊢ ( 𝜑 → II ∈ Top ) |
| 182 |
|
snex |
⊢ { 𝑍 } ∈ V |
| 183 |
182
|
a1i |
⊢ ( 𝜑 → { 𝑍 } ∈ V ) |
| 184 |
|
txrest |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( 𝑈 ∈ II ∧ { 𝑍 } ∈ V ) ) → ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) = ( ( II ↾t 𝑈 ) ×t ( II ↾t { 𝑍 } ) ) ) |
| 185 |
181 181 11 183 184
|
syl22anc |
⊢ ( 𝜑 → ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) = ( ( II ↾t 𝑈 ) ×t ( II ↾t { 𝑍 } ) ) ) |
| 186 |
35 18
|
sseldd |
⊢ ( 𝜑 → 𝑍 ∈ ( 0 [,] 1 ) ) |
| 187 |
|
restsn2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝑍 ∈ ( 0 [,] 1 ) ) → ( II ↾t { 𝑍 } ) = 𝒫 { 𝑍 } ) |
| 188 |
68 186 187
|
sylancr |
⊢ ( 𝜑 → ( II ↾t { 𝑍 } ) = 𝒫 { 𝑍 } ) |
| 189 |
|
pwsn |
⊢ 𝒫 { 𝑍 } = { ∅ , { 𝑍 } } |
| 190 |
|
indisconn |
⊢ { ∅ , { 𝑍 } } ∈ Conn |
| 191 |
189 190
|
eqeltri |
⊢ 𝒫 { 𝑍 } ∈ Conn |
| 192 |
188 191
|
eqeltrdi |
⊢ ( 𝜑 → ( II ↾t { 𝑍 } ) ∈ Conn ) |
| 193 |
|
txconn |
⊢ ( ( ( II ↾t 𝑈 ) ∈ Conn ∧ ( II ↾t { 𝑍 } ) ∈ Conn ) → ( ( II ↾t 𝑈 ) ×t ( II ↾t { 𝑍 } ) ) ∈ Conn ) |
| 194 |
13 192 193
|
syl2anc |
⊢ ( 𝜑 → ( ( II ↾t 𝑈 ) ×t ( II ↾t { 𝑍 } ) ) ∈ Conn ) |
| 195 |
185 194
|
eqeltrd |
⊢ ( 𝜑 → ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) ∈ Conn ) |
| 196 |
105 107
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 197 |
|
df-ima |
⊢ ( 𝐾 “ ( 𝑈 × { 𝑍 } ) ) = ran ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) |
| 198 |
18
|
snssd |
⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑉 ) |
| 199 |
|
xpss2 |
⊢ ( { 𝑍 } ⊆ 𝑉 → ( 𝑈 × { 𝑍 } ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 200 |
|
imass2 |
⊢ ( ( 𝑈 × { 𝑍 } ) ⊆ ( 𝑈 × 𝑉 ) → ( 𝐾 “ ( 𝑈 × { 𝑍 } ) ) ⊆ ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ) |
| 201 |
198 199 200
|
3syl |
⊢ ( 𝜑 → ( 𝐾 “ ( 𝑈 × { 𝑍 } ) ) ⊆ ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ) |
| 202 |
201 127
|
sstrd |
⊢ ( 𝜑 → ( 𝐾 “ ( 𝑈 × { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 203 |
197 202
|
eqsstrrid |
⊢ ( 𝜑 → ran ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 204 |
|
cnrest2 |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ran ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ∧ ( ◡ 𝐹 “ 𝑀 ) ⊆ 𝐵 ) → ( ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) ) |
| 205 |
196 203 138 204
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) ) |
| 206 |
19 205
|
mpbid |
⊢ ( 𝜑 → ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 207 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ { 𝑍 } ) → 〈 𝑋 , 𝑍 〉 ∈ ( 𝑈 × { 𝑍 } ) ) |
| 208 |
15 174 207
|
syl2anc |
⊢ ( 𝜑 → 〈 𝑋 , 𝑍 〉 ∈ ( 𝑈 × { 𝑍 } ) ) |
| 209 |
186
|
snssd |
⊢ ( 𝜑 → { 𝑍 } ⊆ ( 0 [,] 1 ) ) |
| 210 |
|
xpss12 |
⊢ ( ( 𝑈 ⊆ ( 0 [,] 1 ) ∧ { 𝑍 } ⊆ ( 0 [,] 1 ) ) → ( 𝑈 × { 𝑍 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 211 |
31 209 210
|
syl2anc |
⊢ ( 𝜑 → ( 𝑈 × { 𝑍 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 212 |
23
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( 𝑈 × { 𝑍 } ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( 𝑈 × { 𝑍 } ) = ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) ) |
| 213 |
27 211 212
|
sylancr |
⊢ ( 𝜑 → ( 𝑈 × { 𝑍 } ) = ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) ) |
| 214 |
208 213
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑍 〉 ∈ ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) ) |
| 215 |
|
df-ov |
⊢ ( 𝑋 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) = ( ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ‘ 〈 𝑋 , 𝑍 〉 ) |
| 216 |
|
ovres |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ { 𝑍 } ) → ( 𝑋 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) = ( 𝑋 𝐾 𝑍 ) ) |
| 217 |
15 174 216
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) = ( 𝑋 𝐾 𝑍 ) ) |
| 218 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ { 𝑋 } ) |
| 219 |
15 218
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑋 } ) |
| 220 |
|
ovres |
⊢ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑍 ∈ 𝑉 ) → ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑍 ) = ( 𝑋 𝐾 𝑍 ) ) |
| 221 |
219 18 220
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑍 ) = ( 𝑋 𝐾 𝑍 ) ) |
| 222 |
217 221
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑋 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) = ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑍 ) ) |
| 223 |
215 222
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ‘ 〈 𝑋 , 𝑍 〉 ) = ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑍 ) ) |
| 224 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) |
| 225 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 226 |
225
|
a1i |
⊢ ( 𝜑 → { 𝑋 } ∈ V ) |
| 227 |
|
txrest |
⊢ ( ( ( II ∈ Top ∧ II ∈ Top ) ∧ ( { 𝑋 } ∈ V ∧ 𝑉 ∈ II ) ) → ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) = ( ( II ↾t { 𝑋 } ) ×t ( II ↾t 𝑉 ) ) ) |
| 228 |
181 181 226 12 227
|
syl22anc |
⊢ ( 𝜑 → ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) = ( ( II ↾t { 𝑋 } ) ×t ( II ↾t 𝑉 ) ) ) |
| 229 |
|
restsn2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( II ↾t { 𝑋 } ) = 𝒫 { 𝑋 } ) |
| 230 |
68 32 229
|
sylancr |
⊢ ( 𝜑 → ( II ↾t { 𝑋 } ) = 𝒫 { 𝑋 } ) |
| 231 |
|
pwsn |
⊢ 𝒫 { 𝑋 } = { ∅ , { 𝑋 } } |
| 232 |
|
indisconn |
⊢ { ∅ , { 𝑋 } } ∈ Conn |
| 233 |
231 232
|
eqeltri |
⊢ 𝒫 { 𝑋 } ∈ Conn |
| 234 |
230 233
|
eqeltrdi |
⊢ ( 𝜑 → ( II ↾t { 𝑋 } ) ∈ Conn ) |
| 235 |
|
txconn |
⊢ ( ( ( II ↾t { 𝑋 } ) ∈ Conn ∧ ( II ↾t 𝑉 ) ∈ Conn ) → ( ( II ↾t { 𝑋 } ) ×t ( II ↾t 𝑉 ) ) ∈ Conn ) |
| 236 |
234 14 235
|
syl2anc |
⊢ ( 𝜑 → ( ( II ↾t { 𝑋 } ) ×t ( II ↾t 𝑉 ) ) ∈ Conn ) |
| 237 |
228 236
|
eqeltrd |
⊢ ( 𝜑 → ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ∈ Conn ) |
| 238 |
1 2 3 4 5 6 7
|
cvmlift2lem6 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 [,] 1 ) ) → ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |
| 239 |
32 238
|
mpdan |
⊢ ( 𝜑 → ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ) |
| 240 |
|
xpss2 |
⊢ ( 𝑉 ⊆ ( 0 [,] 1 ) → ( { 𝑋 } × 𝑉 ) ⊆ ( { 𝑋 } × ( 0 [,] 1 ) ) ) |
| 241 |
12 34 240
|
3syl |
⊢ ( 𝜑 → ( { 𝑋 } × 𝑉 ) ⊆ ( { 𝑋 } × ( 0 [,] 1 ) ) ) |
| 242 |
32
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ ( 0 [,] 1 ) ) |
| 243 |
|
xpss1 |
⊢ ( { 𝑋 } ⊆ ( 0 [,] 1 ) → ( { 𝑋 } × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 244 |
242 243
|
syl |
⊢ ( 𝜑 → ( { 𝑋 } × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 245 |
23
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( { 𝑋 } × ( 0 [,] 1 ) ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( { 𝑋 } × ( 0 [,] 1 ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ) |
| 246 |
27 244 245
|
sylancr |
⊢ ( 𝜑 → ( { 𝑋 } × ( 0 [,] 1 ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ) |
| 247 |
241 246
|
sseqtrd |
⊢ ( 𝜑 → ( { 𝑋 } × 𝑉 ) ⊆ ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ) |
| 248 |
|
eqid |
⊢ ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) = ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) |
| 249 |
248
|
cnrest |
⊢ ( ( ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) Cn 𝐶 ) ∧ ( { 𝑋 } × 𝑉 ) ⊆ ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ) → ( ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 250 |
239 247 249
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 251 |
241
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾ ( { 𝑋 } × 𝑉 ) ) = ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ) |
| 252 |
225 97
|
xpex |
⊢ ( { 𝑋 } × ( 0 [,] 1 ) ) ∈ V |
| 253 |
252
|
a1i |
⊢ ( 𝜑 → ( { 𝑋 } × ( 0 [,] 1 ) ) ∈ V ) |
| 254 |
|
restabs |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( { 𝑋 } × 𝑉 ) ⊆ ( { 𝑋 } × ( 0 [,] 1 ) ) ∧ ( { 𝑋 } × ( 0 [,] 1 ) ) ∈ V ) → ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑋 } × 𝑉 ) ) = ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ) |
| 255 |
28 241 253 254
|
syl3anc |
⊢ ( 𝜑 → ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑋 } × 𝑉 ) ) = ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ) |
| 256 |
255
|
oveq1d |
⊢ ( 𝜑 → ( ( ( ( II ×t II ) ↾t ( { 𝑋 } × ( 0 [,] 1 ) ) ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) = ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 257 |
250 251 256
|
3eltr3d |
⊢ ( 𝜑 → ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) ) |
| 258 |
|
df-ima |
⊢ ( 𝐾 “ ( { 𝑋 } × 𝑉 ) ) = ran ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) |
| 259 |
15
|
snssd |
⊢ ( 𝜑 → { 𝑋 } ⊆ 𝑈 ) |
| 260 |
|
xpss1 |
⊢ ( { 𝑋 } ⊆ 𝑈 → ( { 𝑋 } × 𝑉 ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 261 |
|
imass2 |
⊢ ( ( { 𝑋 } × 𝑉 ) ⊆ ( 𝑈 × 𝑉 ) → ( 𝐾 “ ( { 𝑋 } × 𝑉 ) ) ⊆ ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ) |
| 262 |
259 260 261
|
3syl |
⊢ ( 𝜑 → ( 𝐾 “ ( { 𝑋 } × 𝑉 ) ) ⊆ ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ) |
| 263 |
262 127
|
sstrd |
⊢ ( 𝜑 → ( 𝐾 “ ( { 𝑋 } × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 264 |
258 263
|
eqsstrrid |
⊢ ( 𝜑 → ran ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ) |
| 265 |
|
cnrest2 |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ran ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ⊆ ( ◡ 𝐹 “ 𝑀 ) ∧ ( ◡ 𝐹 “ 𝑀 ) ⊆ 𝐵 ) → ( ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) ) |
| 266 |
196 264 138 265
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn 𝐶 ) ↔ ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) ) |
| 267 |
257 266
|
mpbid |
⊢ ( 𝜑 → ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) Cn ( 𝐶 ↾t ( ◡ 𝐹 “ 𝑀 ) ) ) ) |
| 268 |
|
opelxpi |
⊢ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝑉 ) → 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝑉 ) ) |
| 269 |
219 16 268
|
syl2anc |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( { 𝑋 } × 𝑉 ) ) |
| 270 |
259 260
|
syl |
⊢ ( 𝜑 → ( { 𝑋 } × 𝑉 ) ⊆ ( 𝑈 × 𝑉 ) ) |
| 271 |
270 55
|
sstrd |
⊢ ( 𝜑 → ( { 𝑋 } × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 272 |
23
|
restuni |
⊢ ( ( ( II ×t II ) ∈ Top ∧ ( { 𝑋 } × 𝑉 ) ⊆ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( { 𝑋 } × 𝑉 ) = ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ) |
| 273 |
27 271 272
|
sylancr |
⊢ ( 𝜑 → ( { 𝑋 } × 𝑉 ) = ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ) |
| 274 |
269 273
|
eleqtrd |
⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ) |
| 275 |
|
df-ov |
⊢ ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑌 ) = ( ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) |
| 276 |
|
ovres |
⊢ ( ( 𝑋 ∈ { 𝑋 } ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑌 ) = ( 𝑋 𝐾 𝑌 ) ) |
| 277 |
219 16 276
|
syl2anc |
⊢ ( 𝜑 → ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑌 ) = ( 𝑋 𝐾 𝑌 ) ) |
| 278 |
275 277
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) = ( 𝑋 𝐾 𝑌 ) ) |
| 279 |
50
|
simprd |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) ∈ 𝑊 ) |
| 280 |
278 279
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) ‘ 〈 𝑋 , 𝑌 〉 ) ∈ 𝑊 ) |
| 281 |
224 237 267 158 161 274 280
|
conncn |
⊢ ( 𝜑 → ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) : ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ⟶ 𝑊 ) |
| 282 |
273
|
feq2d |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) : ( { 𝑋 } × 𝑉 ) ⟶ 𝑊 ↔ ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) : ∪ ( ( II ×t II ) ↾t ( { 𝑋 } × 𝑉 ) ) ⟶ 𝑊 ) ) |
| 283 |
281 282
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) : ( { 𝑋 } × 𝑉 ) ⟶ 𝑊 ) |
| 284 |
283 219 18
|
fovcdmd |
⊢ ( 𝜑 → ( 𝑋 ( 𝐾 ↾ ( { 𝑋 } × 𝑉 ) ) 𝑍 ) ∈ 𝑊 ) |
| 285 |
223 284
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) ‘ 〈 𝑋 , 𝑍 〉 ) ∈ 𝑊 ) |
| 286 |
180 195 206 158 161 214 285
|
conncn |
⊢ ( 𝜑 → ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) : ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) ⟶ 𝑊 ) |
| 287 |
213
|
feq2d |
⊢ ( 𝜑 → ( ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) : ( 𝑈 × { 𝑍 } ) ⟶ 𝑊 ↔ ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) : ∪ ( ( II ×t II ) ↾t ( 𝑈 × { 𝑍 } ) ) ⟶ 𝑊 ) ) |
| 288 |
286 287
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) : ( 𝑈 × { 𝑍 } ) ⟶ 𝑊 ) |
| 289 |
288
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) : ( 𝑈 × { 𝑍 } ) ⟶ 𝑊 ) |
| 290 |
289 110 175
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 ( 𝐾 ↾ ( 𝑈 × { 𝑍 } ) ) 𝑍 ) ∈ 𝑊 ) |
| 291 |
179 290
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) ‘ 〈 𝑚 , 𝑍 〉 ) ∈ 𝑊 ) |
| 292 |
61 80 142 159 162 169 291
|
conncn |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) : ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ⟶ 𝑊 ) |
| 293 |
168
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) : ( { 𝑚 } × 𝑉 ) ⟶ 𝑊 ↔ ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) : ∪ ( ( II ×t II ) ↾t ( { 𝑚 } × 𝑉 ) ) ⟶ 𝑊 ) ) |
| 294 |
292 293
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) : ( { 𝑚 } × 𝑉 ) ⟶ 𝑊 ) |
| 295 |
294 57 58
|
fovcdmd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 ( 𝐾 ↾ ( { 𝑚 } × 𝑉 ) ) 𝑛 ) ∈ 𝑊 ) |
| 296 |
60 295
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑈 ∧ 𝑛 ∈ 𝑉 ) ) → ( 𝑚 𝐾 𝑛 ) ∈ 𝑊 ) |
| 297 |
296
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑈 ∀ 𝑛 ∈ 𝑉 ( 𝑚 𝐾 𝑛 ) ∈ 𝑊 ) |
| 298 |
|
funimassov |
⊢ ( ( Fun 𝐾 ∧ ( 𝑈 × 𝑉 ) ⊆ dom 𝐾 ) → ( ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ 𝑊 ↔ ∀ 𝑚 ∈ 𝑈 ∀ 𝑛 ∈ 𝑉 ( 𝑚 𝐾 𝑛 ) ∈ 𝑊 ) ) |
| 299 |
122 124 298
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ 𝑊 ↔ ∀ 𝑚 ∈ 𝑈 ∀ 𝑛 ∈ 𝑉 ( 𝑚 𝐾 𝑛 ) ∈ 𝑊 ) ) |
| 300 |
297 299
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 “ ( 𝑈 × 𝑉 ) ) ⊆ 𝑊 ) |
| 301 |
1 23 8 2 24 26 28 38 10 53 55 300
|
cvmlift2lem9a |
⊢ ( 𝜑 → ( 𝐾 ↾ ( 𝑈 × 𝑉 ) ) ∈ ( ( ( II ×t II ) ↾t ( 𝑈 × 𝑉 ) ) Cn 𝐶 ) ) |