| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 3 |  | cvmlift2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 4 |  | cvmlift2.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 5 |  | cvmlift2.i | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝐺 0 ) ) | 
						
							| 6 |  | cvmlift2.h | ⊢ 𝐻  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑧 𝐺 0 ) )  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 |  | cvmlift2.k | ⊢ 𝐾  =  ( 𝑥  ∈  ( 0 [,] 1 ) ,  𝑦  ∈  ( 0 [,] 1 )  ↦  ( ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝑥 𝐺 𝑧 ) )  ∧  ( 𝑓 ‘ 0 )  =  ( 𝐻 ‘ 𝑥 ) ) ) ‘ 𝑦 ) ) | 
						
							| 8 |  | cvmlift2lem10.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 9 |  | cvmlift2lem9.1 | ⊢ ( 𝜑  →  ( 𝑋 𝐺 𝑌 )  ∈  𝑀 ) | 
						
							| 10 |  | cvmlift2lem9.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑆 ‘ 𝑀 ) ) | 
						
							| 11 |  | cvmlift2lem9.3 | ⊢ ( 𝜑  →  𝑈  ∈  II ) | 
						
							| 12 |  | cvmlift2lem9.4 | ⊢ ( 𝜑  →  𝑉  ∈  II ) | 
						
							| 13 |  | cvmlift2lem9.5 | ⊢ ( 𝜑  →  ( II  ↾t  𝑈 )  ∈  Conn ) | 
						
							| 14 |  | cvmlift2lem9.6 | ⊢ ( 𝜑  →  ( II  ↾t  𝑉 )  ∈  Conn ) | 
						
							| 15 |  | cvmlift2lem9.7 | ⊢ ( 𝜑  →  𝑋  ∈  𝑈 ) | 
						
							| 16 |  | cvmlift2lem9.8 | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 17 |  | cvmlift2lem9.9 | ⊢ ( 𝜑  →  ( 𝑈  ×  𝑉 )  ⊆  ( ◡ 𝐺  “  𝑀 ) ) | 
						
							| 18 |  | cvmlift2lem9.10 | ⊢ ( 𝜑  →  𝑍  ∈  𝑉 ) | 
						
							| 19 |  | cvmlift2lem9.11 | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  Cn  𝐶 ) ) | 
						
							| 20 |  | cvmlift2lem9.w | ⊢ 𝑊  =  ( ℩ 𝑏  ∈  𝑇 ( 𝑋 𝐾 𝑌 )  ∈  𝑏 ) | 
						
							| 21 |  | iitop | ⊢ II  ∈  Top | 
						
							| 22 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 23 | 21 21 22 22 | txunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 24 | 1 2 3 4 5 6 7 | cvmlift2lem5 | ⊢ ( 𝜑  →  𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 25 | 1 2 3 4 5 6 7 | cvmlift2lem7 | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐾 )  =  𝐺 ) | 
						
							| 26 | 25 3 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐾 )  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 27 | 21 21 | txtopi | ⊢ ( II  ×t  II )  ∈  Top | 
						
							| 28 | 27 | a1i | ⊢ ( 𝜑  →  ( II  ×t  II )  ∈  Top ) | 
						
							| 29 |  | elssuni | ⊢ ( 𝑈  ∈  II  →  𝑈  ⊆  ∪  II ) | 
						
							| 30 | 29 22 | sseqtrrdi | ⊢ ( 𝑈  ∈  II  →  𝑈  ⊆  ( 0 [,] 1 ) ) | 
						
							| 31 | 11 30 | syl | ⊢ ( 𝜑  →  𝑈  ⊆  ( 0 [,] 1 ) ) | 
						
							| 32 | 31 15 | sseldd | ⊢ ( 𝜑  →  𝑋  ∈  ( 0 [,] 1 ) ) | 
						
							| 33 |  | elssuni | ⊢ ( 𝑉  ∈  II  →  𝑉  ⊆  ∪  II ) | 
						
							| 34 | 33 22 | sseqtrrdi | ⊢ ( 𝑉  ∈  II  →  𝑉  ⊆  ( 0 [,] 1 ) ) | 
						
							| 35 | 12 34 | syl | ⊢ ( 𝜑  →  𝑉  ⊆  ( 0 [,] 1 ) ) | 
						
							| 36 | 35 16 | sseldd | ⊢ ( 𝜑  →  𝑌  ∈  ( 0 [,] 1 ) ) | 
						
							| 37 |  | opelxpi | ⊢ ( ( 𝑋  ∈  ( 0 [,] 1 )  ∧  𝑌  ∈  ( 0 [,] 1 ) )  →  〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 38 | 32 36 37 | syl2anc | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 39 | 24 32 36 | fovcdmd | ⊢ ( 𝜑  →  ( 𝑋 𝐾 𝑌 )  ∈  𝐵 ) | 
						
							| 40 |  | fvco3 | ⊢ ( ( 𝐾 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  〈 𝑋 ,  𝑌 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝐹  ∘  𝐾 ) ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 ) ) ) | 
						
							| 41 | 24 38 40 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐾 ) ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 ) ) ) | 
						
							| 42 | 25 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐾 ) ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 43 | 41 42 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 ) )  =  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 44 |  | df-ov | ⊢ ( 𝑋 𝐾 𝑌 )  =  ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 45 | 44 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) )  =  ( 𝐹 ‘ ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 ) ) | 
						
							| 46 |  | df-ov | ⊢ ( 𝑋 𝐺 𝑌 )  =  ( 𝐺 ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 47 | 43 45 46 | 3eqtr4g | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) )  =  ( 𝑋 𝐺 𝑌 ) ) | 
						
							| 48 | 47 9 | eqeltrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) )  ∈  𝑀 ) | 
						
							| 49 | 8 1 20 | cvmsiota | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝑇  ∈  ( 𝑆 ‘ 𝑀 )  ∧  ( 𝑋 𝐾 𝑌 )  ∈  𝐵  ∧  ( 𝐹 ‘ ( 𝑋 𝐾 𝑌 ) )  ∈  𝑀 ) )  →  ( 𝑊  ∈  𝑇  ∧  ( 𝑋 𝐾 𝑌 )  ∈  𝑊 ) ) | 
						
							| 50 | 2 10 39 48 49 | syl13anc | ⊢ ( 𝜑  →  ( 𝑊  ∈  𝑇  ∧  ( 𝑋 𝐾 𝑌 )  ∈  𝑊 ) ) | 
						
							| 51 | 44 | eleq1i | ⊢ ( ( 𝑋 𝐾 𝑌 )  ∈  𝑊  ↔  ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑊 ) | 
						
							| 52 | 51 | anbi2i | ⊢ ( ( 𝑊  ∈  𝑇  ∧  ( 𝑋 𝐾 𝑌 )  ∈  𝑊 )  ↔  ( 𝑊  ∈  𝑇  ∧  ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑊 ) ) | 
						
							| 53 | 50 52 | sylib | ⊢ ( 𝜑  →  ( 𝑊  ∈  𝑇  ∧  ( 𝐾 ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑊 ) ) | 
						
							| 54 |  | xpss12 | ⊢ ( ( 𝑈  ⊆  ( 0 [,] 1 )  ∧  𝑉  ⊆  ( 0 [,] 1 ) )  →  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 55 | 31 35 54 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 56 |  | snidg | ⊢ ( 𝑚  ∈  𝑈  →  𝑚  ∈  { 𝑚 } ) | 
						
							| 57 | 56 | ad2antrl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑚  ∈  { 𝑚 } ) | 
						
							| 58 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑛  ∈  𝑉 ) | 
						
							| 59 |  | ovres | ⊢ ( ( 𝑚  ∈  { 𝑚 }  ∧  𝑛  ∈  𝑉 )  →  ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑛 )  =  ( 𝑚 𝐾 𝑛 ) ) | 
						
							| 60 | 57 58 59 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑛 )  =  ( 𝑚 𝐾 𝑛 ) ) | 
						
							| 61 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) | 
						
							| 62 | 21 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  II  ∈  Top ) | 
						
							| 63 |  | snex | ⊢ { 𝑚 }  ∈  V | 
						
							| 64 | 63 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  { 𝑚 }  ∈  V ) | 
						
							| 65 | 12 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑉  ∈  II ) | 
						
							| 66 |  | txrest | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( { 𝑚 }  ∈  V  ∧  𝑉  ∈  II ) )  →  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  =  ( ( II  ↾t  { 𝑚 } )  ×t  ( II  ↾t  𝑉 ) ) ) | 
						
							| 67 | 62 62 64 65 66 | syl22anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  =  ( ( II  ↾t  { 𝑚 } )  ×t  ( II  ↾t  𝑉 ) ) ) | 
						
							| 68 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 69 | 31 | sselda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑈 )  →  𝑚  ∈  ( 0 [,] 1 ) ) | 
						
							| 70 | 69 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑚  ∈  ( 0 [,] 1 ) ) | 
						
							| 71 |  | restsn2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝑚  ∈  ( 0 [,] 1 ) )  →  ( II  ↾t  { 𝑚 } )  =  𝒫  { 𝑚 } ) | 
						
							| 72 | 68 70 71 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( II  ↾t  { 𝑚 } )  =  𝒫  { 𝑚 } ) | 
						
							| 73 |  | pwsn | ⊢ 𝒫  { 𝑚 }  =  { ∅ ,  { 𝑚 } } | 
						
							| 74 |  | indisconn | ⊢ { ∅ ,  { 𝑚 } }  ∈  Conn | 
						
							| 75 | 73 74 | eqeltri | ⊢ 𝒫  { 𝑚 }  ∈  Conn | 
						
							| 76 | 72 75 | eqeltrdi | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( II  ↾t  { 𝑚 } )  ∈  Conn ) | 
						
							| 77 | 14 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( II  ↾t  𝑉 )  ∈  Conn ) | 
						
							| 78 |  | txconn | ⊢ ( ( ( II  ↾t  { 𝑚 } )  ∈  Conn  ∧  ( II  ↾t  𝑉 )  ∈  Conn )  →  ( ( II  ↾t  { 𝑚 } )  ×t  ( II  ↾t  𝑉 ) )  ∈  Conn ) | 
						
							| 79 | 76 77 78 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( II  ↾t  { 𝑚 } )  ×t  ( II  ↾t  𝑉 ) )  ∈  Conn ) | 
						
							| 80 | 67 79 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  ∈  Conn ) | 
						
							| 81 | 1 2 3 4 5 6 7 | cvmlift2lem6 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 0 [,] 1 ) )  →  ( 𝐾  ↾  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) | 
						
							| 82 | 70 81 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  ↾  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) | 
						
							| 83 | 35 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑉  ⊆  ( 0 [,] 1 ) ) | 
						
							| 84 |  | xpss2 | ⊢ ( 𝑉  ⊆  ( 0 [,] 1 )  →  ( { 𝑚 }  ×  𝑉 )  ⊆  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) | 
						
							| 85 | 83 84 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  𝑉 )  ⊆  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) | 
						
							| 86 | 70 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  { 𝑚 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 87 |  | xpss1 | ⊢ ( { 𝑚 }  ⊆  ( 0 [,] 1 )  →  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 88 | 86 87 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 89 | 23 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 90 | 27 88 89 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 91 | 85 90 | sseqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  𝑉 )  ⊆  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 92 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) | 
						
							| 93 | 92 | cnrest | ⊢ ( ( ( 𝐾  ↾  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 )  ∧  ( { 𝑚 }  ×  𝑉 )  ⊆  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 94 | 82 91 93 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 95 | 85 | resabs1d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾  ( { 𝑚 }  ×  𝑉 ) )  =  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) ) | 
						
							| 96 | 27 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( II  ×t  II )  ∈  Top ) | 
						
							| 97 |  | ovex | ⊢ ( 0 [,] 1 )  ∈  V | 
						
							| 98 | 63 97 | xpex | ⊢ ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ∈  V | 
						
							| 99 | 98 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ∈  V ) | 
						
							| 100 |  | restabs | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( { 𝑚 }  ×  𝑉 )  ⊆  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ∧  ( { 𝑚 }  ×  ( 0 [,] 1 ) )  ∈  V )  →  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  =  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ) | 
						
							| 101 | 96 85 99 100 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  =  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ) | 
						
							| 102 | 101 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 )  =  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 103 | 94 95 102 | 3eltr3d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 104 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 105 | 2 104 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝐶  ∈  Top ) | 
						
							| 107 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 108 | 106 107 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 109 |  | df-ima | ⊢ ( 𝐾  “  ( { 𝑚 }  ×  𝑉 ) )  =  ran  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) | 
						
							| 110 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑚  ∈  𝑈 ) | 
						
							| 111 | 110 | snssd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  { 𝑚 }  ⊆  𝑈 ) | 
						
							| 112 |  | xpss1 | ⊢ ( { 𝑚 }  ⊆  𝑈  →  ( { 𝑚 }  ×  𝑉 )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 113 |  | imass2 | ⊢ ( ( { 𝑚 }  ×  𝑉 )  ⊆  ( 𝑈  ×  𝑉 )  →  ( 𝐾  “  ( { 𝑚 }  ×  𝑉 ) )  ⊆  ( 𝐾  “  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 114 | 111 112 113 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  “  ( { 𝑚 }  ×  𝑉 ) )  ⊆  ( 𝐾  “  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 115 |  | imaco | ⊢ ( ( ◡ 𝐾  ∘  ◡ 𝐹 )  “  𝑀 )  =  ( ◡ 𝐾  “  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 116 |  | cnvco | ⊢ ◡ ( 𝐹  ∘  𝐾 )  =  ( ◡ 𝐾  ∘  ◡ 𝐹 ) | 
						
							| 117 | 25 | cnveqd | ⊢ ( 𝜑  →  ◡ ( 𝐹  ∘  𝐾 )  =  ◡ 𝐺 ) | 
						
							| 118 | 116 117 | eqtr3id | ⊢ ( 𝜑  →  ( ◡ 𝐾  ∘  ◡ 𝐹 )  =  ◡ 𝐺 ) | 
						
							| 119 | 118 | imaeq1d | ⊢ ( 𝜑  →  ( ( ◡ 𝐾  ∘  ◡ 𝐹 )  “  𝑀 )  =  ( ◡ 𝐺  “  𝑀 ) ) | 
						
							| 120 | 115 119 | eqtr3id | ⊢ ( 𝜑  →  ( ◡ 𝐾  “  ( ◡ 𝐹  “  𝑀 ) )  =  ( ◡ 𝐺  “  𝑀 ) ) | 
						
							| 121 | 17 120 | sseqtrrd | ⊢ ( 𝜑  →  ( 𝑈  ×  𝑉 )  ⊆  ( ◡ 𝐾  “  ( ◡ 𝐹  “  𝑀 ) ) ) | 
						
							| 122 | 24 | ffund | ⊢ ( 𝜑  →  Fun  𝐾 ) | 
						
							| 123 | 24 | fdmd | ⊢ ( 𝜑  →  dom  𝐾  =  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 124 | 55 123 | sseqtrrd | ⊢ ( 𝜑  →  ( 𝑈  ×  𝑉 )  ⊆  dom  𝐾 ) | 
						
							| 125 |  | funimass3 | ⊢ ( ( Fun  𝐾  ∧  ( 𝑈  ×  𝑉 )  ⊆  dom  𝐾 )  →  ( ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 )  ↔  ( 𝑈  ×  𝑉 )  ⊆  ( ◡ 𝐾  “  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 126 | 122 124 125 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 )  ↔  ( 𝑈  ×  𝑉 )  ⊆  ( ◡ 𝐾  “  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 127 | 121 126 | mpbird | ⊢ ( 𝜑  →  ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 128 | 127 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 129 | 114 128 | sstrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  “  ( { 𝑚 }  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 130 | 109 129 | eqsstrrid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ran  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 131 |  | cnvimass | ⊢ ( ◡ 𝐹  “  𝑀 )  ⊆  dom  𝐹 | 
						
							| 132 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 133 | 2 132 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 134 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 135 | 1 134 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 136 |  | fdm | ⊢ ( 𝐹 : 𝐵 ⟶ ∪  𝐽  →  dom  𝐹  =  𝐵 ) | 
						
							| 137 | 133 135 136 | 3syl | ⊢ ( 𝜑  →  dom  𝐹  =  𝐵 ) | 
						
							| 138 | 131 137 | sseqtrid | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑀 )  ⊆  𝐵 ) | 
						
							| 139 | 138 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ◡ 𝐹  “  𝑀 )  ⊆  𝐵 ) | 
						
							| 140 |  | cnrest2 | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ran  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 )  ∧  ( ◡ 𝐹  “  𝑀 )  ⊆  𝐵 )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) ) | 
						
							| 141 | 108 130 139 140 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) ) | 
						
							| 142 | 103 141 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 143 | 8 | cvmsss | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑀 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 144 | 10 143 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  𝐶 ) | 
						
							| 145 | 50 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  𝑇 ) | 
						
							| 146 | 144 145 | sseldd | ⊢ ( 𝜑  →  𝑊  ∈  𝐶 ) | 
						
							| 147 |  | elssuni | ⊢ ( 𝑊  ∈  𝑇  →  𝑊  ⊆  ∪  𝑇 ) | 
						
							| 148 | 145 147 | syl | ⊢ ( 𝜑  →  𝑊  ⊆  ∪  𝑇 ) | 
						
							| 149 | 8 | cvmsuni | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑀 )  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 150 | 10 149 | syl | ⊢ ( 𝜑  →  ∪  𝑇  =  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 151 | 148 150 | sseqtrd | ⊢ ( 𝜑  →  𝑊  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 152 | 8 | cvmsrcl | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝑀 )  →  𝑀  ∈  𝐽 ) | 
						
							| 153 | 10 152 | syl | ⊢ ( 𝜑  →  𝑀  ∈  𝐽 ) | 
						
							| 154 |  | cnima | ⊢ ( ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  ∧  𝑀  ∈  𝐽 )  →  ( ◡ 𝐹  “  𝑀 )  ∈  𝐶 ) | 
						
							| 155 | 133 153 154 | syl2anc | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑀 )  ∈  𝐶 ) | 
						
							| 156 |  | restopn2 | ⊢ ( ( 𝐶  ∈  Top  ∧  ( ◡ 𝐹  “  𝑀 )  ∈  𝐶 )  →  ( 𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) )  ↔  ( 𝑊  ∈  𝐶  ∧  𝑊  ⊆  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 157 | 105 155 156 | syl2anc | ⊢ ( 𝜑  →  ( 𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) )  ↔  ( 𝑊  ∈  𝐶  ∧  𝑊  ⊆  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 158 | 146 151 157 | mpbir2and | ⊢ ( 𝜑  →  𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑊  ∈  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) | 
						
							| 160 | 8 | cvmscld | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝑀 )  ∧  𝑊  ∈  𝑇 )  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 161 | 2 10 145 160 | syl3anc | ⊢ ( 𝜑  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 162 | 161 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑊  ∈  ( Clsd ‘ ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 163 | 18 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑍  ∈  𝑉 ) | 
						
							| 164 |  | opelxpi | ⊢ ( ( 𝑚  ∈  { 𝑚 }  ∧  𝑍  ∈  𝑉 )  →  〈 𝑚 ,  𝑍 〉  ∈  ( { 𝑚 }  ×  𝑉 ) ) | 
						
							| 165 | 57 163 164 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  〈 𝑚 ,  𝑍 〉  ∈  ( { 𝑚 }  ×  𝑉 ) ) | 
						
							| 166 | 85 88 | sstrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 167 | 23 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( { 𝑚 }  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( { 𝑚 }  ×  𝑉 )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ) | 
						
							| 168 | 27 166 167 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( { 𝑚 }  ×  𝑉 )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ) | 
						
							| 169 | 165 168 | eleqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  〈 𝑚 ,  𝑍 〉  ∈  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ) | 
						
							| 170 |  | df-ov | ⊢ ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑍 )  =  ( ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) ‘ 〈 𝑚 ,  𝑍 〉 ) | 
						
							| 171 |  | ovres | ⊢ ( ( 𝑚  ∈  { 𝑚 }  ∧  𝑍  ∈  𝑉 )  →  ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑍 )  =  ( 𝑚 𝐾 𝑍 ) ) | 
						
							| 172 | 57 163 171 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑍 )  =  ( 𝑚 𝐾 𝑍 ) ) | 
						
							| 173 |  | snidg | ⊢ ( 𝑍  ∈  𝑉  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 174 | 18 173 | syl | ⊢ ( 𝜑  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  𝑍  ∈  { 𝑍 } ) | 
						
							| 176 |  | ovres | ⊢ ( ( 𝑚  ∈  𝑈  ∧  𝑍  ∈  { 𝑍 } )  →  ( 𝑚 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  =  ( 𝑚 𝐾 𝑍 ) ) | 
						
							| 177 | 110 175 176 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  =  ( 𝑚 𝐾 𝑍 ) ) | 
						
							| 178 | 172 177 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑍 )  =  ( 𝑚 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 ) ) | 
						
							| 179 | 170 178 | eqtr3id | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) ‘ 〈 𝑚 ,  𝑍 〉 )  =  ( 𝑚 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 ) ) | 
						
							| 180 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) ) | 
						
							| 181 | 21 | a1i | ⊢ ( 𝜑  →  II  ∈  Top ) | 
						
							| 182 |  | snex | ⊢ { 𝑍 }  ∈  V | 
						
							| 183 | 182 | a1i | ⊢ ( 𝜑  →  { 𝑍 }  ∈  V ) | 
						
							| 184 |  | txrest | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( 𝑈  ∈  II  ∧  { 𝑍 }  ∈  V ) )  →  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  =  ( ( II  ↾t  𝑈 )  ×t  ( II  ↾t  { 𝑍 } ) ) ) | 
						
							| 185 | 181 181 11 183 184 | syl22anc | ⊢ ( 𝜑  →  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  =  ( ( II  ↾t  𝑈 )  ×t  ( II  ↾t  { 𝑍 } ) ) ) | 
						
							| 186 | 35 18 | sseldd | ⊢ ( 𝜑  →  𝑍  ∈  ( 0 [,] 1 ) ) | 
						
							| 187 |  | restsn2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝑍  ∈  ( 0 [,] 1 ) )  →  ( II  ↾t  { 𝑍 } )  =  𝒫  { 𝑍 } ) | 
						
							| 188 | 68 186 187 | sylancr | ⊢ ( 𝜑  →  ( II  ↾t  { 𝑍 } )  =  𝒫  { 𝑍 } ) | 
						
							| 189 |  | pwsn | ⊢ 𝒫  { 𝑍 }  =  { ∅ ,  { 𝑍 } } | 
						
							| 190 |  | indisconn | ⊢ { ∅ ,  { 𝑍 } }  ∈  Conn | 
						
							| 191 | 189 190 | eqeltri | ⊢ 𝒫  { 𝑍 }  ∈  Conn | 
						
							| 192 | 188 191 | eqeltrdi | ⊢ ( 𝜑  →  ( II  ↾t  { 𝑍 } )  ∈  Conn ) | 
						
							| 193 |  | txconn | ⊢ ( ( ( II  ↾t  𝑈 )  ∈  Conn  ∧  ( II  ↾t  { 𝑍 } )  ∈  Conn )  →  ( ( II  ↾t  𝑈 )  ×t  ( II  ↾t  { 𝑍 } ) )  ∈  Conn ) | 
						
							| 194 | 13 192 193 | syl2anc | ⊢ ( 𝜑  →  ( ( II  ↾t  𝑈 )  ×t  ( II  ↾t  { 𝑍 } ) )  ∈  Conn ) | 
						
							| 195 | 185 194 | eqeltrd | ⊢ ( 𝜑  →  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  ∈  Conn ) | 
						
							| 196 | 105 107 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 197 |  | df-ima | ⊢ ( 𝐾  “  ( 𝑈  ×  { 𝑍 } ) )  =  ran  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) | 
						
							| 198 | 18 | snssd | ⊢ ( 𝜑  →  { 𝑍 }  ⊆  𝑉 ) | 
						
							| 199 |  | xpss2 | ⊢ ( { 𝑍 }  ⊆  𝑉  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 200 |  | imass2 | ⊢ ( ( 𝑈  ×  { 𝑍 } )  ⊆  ( 𝑈  ×  𝑉 )  →  ( 𝐾  “  ( 𝑈  ×  { 𝑍 } ) )  ⊆  ( 𝐾  “  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 201 | 198 199 200 | 3syl | ⊢ ( 𝜑  →  ( 𝐾  “  ( 𝑈  ×  { 𝑍 } ) )  ⊆  ( 𝐾  “  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 202 | 201 127 | sstrd | ⊢ ( 𝜑  →  ( 𝐾  “  ( 𝑈  ×  { 𝑍 } ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 203 | 197 202 | eqsstrrid | ⊢ ( 𝜑  →  ran  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 204 |  | cnrest2 | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ran  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ⊆  ( ◡ 𝐹  “  𝑀 )  ∧  ( ◡ 𝐹  “  𝑀 )  ⊆  𝐵 )  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) ) | 
						
							| 205 | 196 203 138 204 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) ) | 
						
							| 206 | 19 205 | mpbid | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 207 |  | opelxpi | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  { 𝑍 } )  →  〈 𝑋 ,  𝑍 〉  ∈  ( 𝑈  ×  { 𝑍 } ) ) | 
						
							| 208 | 15 174 207 | syl2anc | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑍 〉  ∈  ( 𝑈  ×  { 𝑍 } ) ) | 
						
							| 209 | 186 | snssd | ⊢ ( 𝜑  →  { 𝑍 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 210 |  | xpss12 | ⊢ ( ( 𝑈  ⊆  ( 0 [,] 1 )  ∧  { 𝑍 }  ⊆  ( 0 [,] 1 ) )  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 211 | 31 209 210 | syl2anc | ⊢ ( 𝜑  →  ( 𝑈  ×  { 𝑍 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 212 | 23 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( 𝑈  ×  { 𝑍 } )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( 𝑈  ×  { 𝑍 } )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) ) ) | 
						
							| 213 | 27 211 212 | sylancr | ⊢ ( 𝜑  →  ( 𝑈  ×  { 𝑍 } )  =  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) ) ) | 
						
							| 214 | 208 213 | eleqtrd | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑍 〉  ∈  ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) ) ) | 
						
							| 215 |  | df-ov | ⊢ ( 𝑋 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  =  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) ‘ 〈 𝑋 ,  𝑍 〉 ) | 
						
							| 216 |  | ovres | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  { 𝑍 } )  →  ( 𝑋 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  =  ( 𝑋 𝐾 𝑍 ) ) | 
						
							| 217 | 15 174 216 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  =  ( 𝑋 𝐾 𝑍 ) ) | 
						
							| 218 |  | snidg | ⊢ ( 𝑋  ∈  𝑈  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 219 | 15 218 | syl | ⊢ ( 𝜑  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 220 |  | ovres | ⊢ ( ( 𝑋  ∈  { 𝑋 }  ∧  𝑍  ∈  𝑉 )  →  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑍 )  =  ( 𝑋 𝐾 𝑍 ) ) | 
						
							| 221 | 219 18 220 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑍 )  =  ( 𝑋 𝐾 𝑍 ) ) | 
						
							| 222 | 217 221 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  =  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑍 ) ) | 
						
							| 223 | 215 222 | eqtr3id | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) ‘ 〈 𝑋 ,  𝑍 〉 )  =  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑍 ) ) | 
						
							| 224 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) | 
						
							| 225 |  | snex | ⊢ { 𝑋 }  ∈  V | 
						
							| 226 | 225 | a1i | ⊢ ( 𝜑  →  { 𝑋 }  ∈  V ) | 
						
							| 227 |  | txrest | ⊢ ( ( ( II  ∈  Top  ∧  II  ∈  Top )  ∧  ( { 𝑋 }  ∈  V  ∧  𝑉  ∈  II ) )  →  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  =  ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  𝑉 ) ) ) | 
						
							| 228 | 181 181 226 12 227 | syl22anc | ⊢ ( 𝜑  →  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  =  ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  𝑉 ) ) ) | 
						
							| 229 |  | restsn2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( II  ↾t  { 𝑋 } )  =  𝒫  { 𝑋 } ) | 
						
							| 230 | 68 32 229 | sylancr | ⊢ ( 𝜑  →  ( II  ↾t  { 𝑋 } )  =  𝒫  { 𝑋 } ) | 
						
							| 231 |  | pwsn | ⊢ 𝒫  { 𝑋 }  =  { ∅ ,  { 𝑋 } } | 
						
							| 232 |  | indisconn | ⊢ { ∅ ,  { 𝑋 } }  ∈  Conn | 
						
							| 233 | 231 232 | eqeltri | ⊢ 𝒫  { 𝑋 }  ∈  Conn | 
						
							| 234 | 230 233 | eqeltrdi | ⊢ ( 𝜑  →  ( II  ↾t  { 𝑋 } )  ∈  Conn ) | 
						
							| 235 |  | txconn | ⊢ ( ( ( II  ↾t  { 𝑋 } )  ∈  Conn  ∧  ( II  ↾t  𝑉 )  ∈  Conn )  →  ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  𝑉 ) )  ∈  Conn ) | 
						
							| 236 | 234 14 235 | syl2anc | ⊢ ( 𝜑  →  ( ( II  ↾t  { 𝑋 } )  ×t  ( II  ↾t  𝑉 ) )  ∈  Conn ) | 
						
							| 237 | 228 236 | eqeltrd | ⊢ ( 𝜑  →  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  ∈  Conn ) | 
						
							| 238 | 1 2 3 4 5 6 7 | cvmlift2lem6 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( 0 [,] 1 ) )  →  ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) | 
						
							| 239 | 32 238 | mpdan | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 ) ) | 
						
							| 240 |  | xpss2 | ⊢ ( 𝑉  ⊆  ( 0 [,] 1 )  →  ( { 𝑋 }  ×  𝑉 )  ⊆  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) | 
						
							| 241 | 12 34 240 | 3syl | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  𝑉 )  ⊆  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) | 
						
							| 242 | 32 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 243 |  | xpss1 | ⊢ ( { 𝑋 }  ⊆  ( 0 [,] 1 )  →  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 244 | 242 243 | syl | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 245 | 23 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 246 | 27 244 245 | sylancr | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 247 | 241 246 | sseqtrd | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  𝑉 )  ⊆  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) ) | 
						
							| 248 |  | eqid | ⊢ ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) | 
						
							| 249 | 248 | cnrest | ⊢ ( ( ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  Cn  𝐶 )  ∧  ( { 𝑋 }  ×  𝑉 )  ⊆  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) ) )  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 250 | 239 247 249 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 251 | 241 | resabs1d | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾  ( { 𝑋 }  ×  𝑉 ) )  =  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) ) | 
						
							| 252 | 225 97 | xpex | ⊢ ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ∈  V | 
						
							| 253 | 252 | a1i | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ∈  V ) | 
						
							| 254 |  | restabs | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( { 𝑋 }  ×  𝑉 )  ⊆  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ∧  ( { 𝑋 }  ×  ( 0 [,] 1 ) )  ∈  V )  →  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  =  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ) | 
						
							| 255 | 28 241 253 254 | syl3anc | ⊢ ( 𝜑  →  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  =  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ) | 
						
							| 256 | 255 | oveq1d | ⊢ ( 𝜑  →  ( ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  ( 0 [,] 1 ) ) )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 )  =  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 257 | 250 251 256 | 3eltr3d | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 ) ) | 
						
							| 258 |  | df-ima | ⊢ ( 𝐾  “  ( { 𝑋 }  ×  𝑉 ) )  =  ran  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) | 
						
							| 259 | 15 | snssd | ⊢ ( 𝜑  →  { 𝑋 }  ⊆  𝑈 ) | 
						
							| 260 |  | xpss1 | ⊢ ( { 𝑋 }  ⊆  𝑈  →  ( { 𝑋 }  ×  𝑉 )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 261 |  | imass2 | ⊢ ( ( { 𝑋 }  ×  𝑉 )  ⊆  ( 𝑈  ×  𝑉 )  →  ( 𝐾  “  ( { 𝑋 }  ×  𝑉 ) )  ⊆  ( 𝐾  “  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 262 | 259 260 261 | 3syl | ⊢ ( 𝜑  →  ( 𝐾  “  ( { 𝑋 }  ×  𝑉 ) )  ⊆  ( 𝐾  “  ( 𝑈  ×  𝑉 ) ) ) | 
						
							| 263 | 262 127 | sstrd | ⊢ ( 𝜑  →  ( 𝐾  “  ( { 𝑋 }  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 264 | 258 263 | eqsstrrid | ⊢ ( 𝜑  →  ran  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 ) ) | 
						
							| 265 |  | cnrest2 | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ran  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ⊆  ( ◡ 𝐹  “  𝑀 )  ∧  ( ◡ 𝐹  “  𝑀 )  ⊆  𝐵 )  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) ) | 
						
							| 266 | 196 264 138 265 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  𝐶 )  ↔  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) ) | 
						
							| 267 | 257 266 | mpbid | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) )  Cn  ( 𝐶  ↾t  ( ◡ 𝐹  “  𝑀 ) ) ) ) | 
						
							| 268 |  | opelxpi | ⊢ ( ( 𝑋  ∈  { 𝑋 }  ∧  𝑌  ∈  𝑉 )  →  〈 𝑋 ,  𝑌 〉  ∈  ( { 𝑋 }  ×  𝑉 ) ) | 
						
							| 269 | 219 16 268 | syl2anc | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ( { 𝑋 }  ×  𝑉 ) ) | 
						
							| 270 | 259 260 | syl | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  𝑉 )  ⊆  ( 𝑈  ×  𝑉 ) ) | 
						
							| 271 | 270 55 | sstrd | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 272 | 23 | restuni | ⊢ ( ( ( II  ×t  II )  ∈  Top  ∧  ( { 𝑋 }  ×  𝑉 )  ⊆  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( { 𝑋 }  ×  𝑉 )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ) | 
						
							| 273 | 27 271 272 | sylancr | ⊢ ( 𝜑  →  ( { 𝑋 }  ×  𝑉 )  =  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ) | 
						
							| 274 | 269 273 | eleqtrd | ⊢ ( 𝜑  →  〈 𝑋 ,  𝑌 〉  ∈  ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ) | 
						
							| 275 |  | df-ov | ⊢ ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑌 )  =  ( ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) ‘ 〈 𝑋 ,  𝑌 〉 ) | 
						
							| 276 |  | ovres | ⊢ ( ( 𝑋  ∈  { 𝑋 }  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑌 )  =  ( 𝑋 𝐾 𝑌 ) ) | 
						
							| 277 | 219 16 276 | syl2anc | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑌 )  =  ( 𝑋 𝐾 𝑌 ) ) | 
						
							| 278 | 275 277 | eqtr3id | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) ‘ 〈 𝑋 ,  𝑌 〉 )  =  ( 𝑋 𝐾 𝑌 ) ) | 
						
							| 279 | 50 | simprd | ⊢ ( 𝜑  →  ( 𝑋 𝐾 𝑌 )  ∈  𝑊 ) | 
						
							| 280 | 278 279 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) ‘ 〈 𝑋 ,  𝑌 〉 )  ∈  𝑊 ) | 
						
							| 281 | 224 237 267 158 161 274 280 | conncn | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) : ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ⟶ 𝑊 ) | 
						
							| 282 | 273 | feq2d | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) : ( { 𝑋 }  ×  𝑉 ) ⟶ 𝑊  ↔  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) : ∪  ( ( II  ×t  II )  ↾t  ( { 𝑋 }  ×  𝑉 ) ) ⟶ 𝑊 ) ) | 
						
							| 283 | 281 282 | mpbird | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) : ( { 𝑋 }  ×  𝑉 ) ⟶ 𝑊 ) | 
						
							| 284 | 283 219 18 | fovcdmd | ⊢ ( 𝜑  →  ( 𝑋 ( 𝐾  ↾  ( { 𝑋 }  ×  𝑉 ) ) 𝑍 )  ∈  𝑊 ) | 
						
							| 285 | 223 284 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) ‘ 〈 𝑋 ,  𝑍 〉 )  ∈  𝑊 ) | 
						
							| 286 | 180 195 206 158 161 214 285 | conncn | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) : ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) ) ⟶ 𝑊 ) | 
						
							| 287 | 213 | feq2d | ⊢ ( 𝜑  →  ( ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) : ( 𝑈  ×  { 𝑍 } ) ⟶ 𝑊  ↔  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) : ∪  ( ( II  ×t  II )  ↾t  ( 𝑈  ×  { 𝑍 } ) ) ⟶ 𝑊 ) ) | 
						
							| 288 | 286 287 | mpbird | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) : ( 𝑈  ×  { 𝑍 } ) ⟶ 𝑊 ) | 
						
							| 289 | 288 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) : ( 𝑈  ×  { 𝑍 } ) ⟶ 𝑊 ) | 
						
							| 290 | 289 110 175 | fovcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 ( 𝐾  ↾  ( 𝑈  ×  { 𝑍 } ) ) 𝑍 )  ∈  𝑊 ) | 
						
							| 291 | 179 290 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) ‘ 〈 𝑚 ,  𝑍 〉 )  ∈  𝑊 ) | 
						
							| 292 | 61 80 142 159 162 169 291 | conncn | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) : ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ⟶ 𝑊 ) | 
						
							| 293 | 168 | feq2d | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) : ( { 𝑚 }  ×  𝑉 ) ⟶ 𝑊  ↔  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) : ∪  ( ( II  ×t  II )  ↾t  ( { 𝑚 }  ×  𝑉 ) ) ⟶ 𝑊 ) ) | 
						
							| 294 | 292 293 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) : ( { 𝑚 }  ×  𝑉 ) ⟶ 𝑊 ) | 
						
							| 295 | 294 57 58 | fovcdmd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 ( 𝐾  ↾  ( { 𝑚 }  ×  𝑉 ) ) 𝑛 )  ∈  𝑊 ) | 
						
							| 296 | 60 295 | eqeltrrd | ⊢ ( ( 𝜑  ∧  ( 𝑚  ∈  𝑈  ∧  𝑛  ∈  𝑉 ) )  →  ( 𝑚 𝐾 𝑛 )  ∈  𝑊 ) | 
						
							| 297 | 296 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑈 ∀ 𝑛  ∈  𝑉 ( 𝑚 𝐾 𝑛 )  ∈  𝑊 ) | 
						
							| 298 |  | funimassov | ⊢ ( ( Fun  𝐾  ∧  ( 𝑈  ×  𝑉 )  ⊆  dom  𝐾 )  →  ( ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  𝑊  ↔  ∀ 𝑚  ∈  𝑈 ∀ 𝑛  ∈  𝑉 ( 𝑚 𝐾 𝑛 )  ∈  𝑊 ) ) | 
						
							| 299 | 122 124 298 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  𝑊  ↔  ∀ 𝑚  ∈  𝑈 ∀ 𝑛  ∈  𝑉 ( 𝑚 𝐾 𝑛 )  ∈  𝑊 ) ) | 
						
							| 300 | 297 299 | mpbird | ⊢ ( 𝜑  →  ( 𝐾  “  ( 𝑈  ×  𝑉 ) )  ⊆  𝑊 ) | 
						
							| 301 | 1 23 8 2 24 26 28 38 10 53 55 300 | cvmlift2lem9a | ⊢ ( 𝜑  →  ( 𝐾  ↾  ( 𝑈  ×  𝑉 ) )  ∈  ( ( ( II  ×t  II )  ↾t  ( 𝑈  ×  𝑉 ) )  Cn  𝐶 ) ) |