Metamath Proof Explorer


Theorem cvmlift2lem9a

Description: Lemma for cvmlift2 and cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift2lem9a.b 𝐵 = 𝐶
cvmlift2lem9a.y 𝑌 = 𝐾
cvmlift2lem9a.s 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑐𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐𝑑 ) = ∅ ∧ ( 𝐹𝑐 ) ∈ ( ( 𝐶t 𝑐 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmlift2lem9a.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmlift2lem9a.h ( 𝜑𝐻 : 𝑌𝐵 )
cvmlift2lem9a.g ( 𝜑 → ( 𝐹𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) )
cvmlift2lem9a.k ( 𝜑𝐾 ∈ Top )
cvmlift2lem9a.1 ( 𝜑𝑋𝑌 )
cvmlift2lem9a.2 ( 𝜑𝑇 ∈ ( 𝑆𝐴 ) )
cvmlift2lem9a.3 ( 𝜑 → ( 𝑊𝑇 ∧ ( 𝐻𝑋 ) ∈ 𝑊 ) )
cvmlift2lem9a.4 ( 𝜑𝑀𝑌 )
cvmlift2lem9a.6 ( 𝜑 → ( 𝐻𝑀 ) ⊆ 𝑊 )
Assertion cvmlift2lem9a ( 𝜑 → ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐶 ) )

Proof

Step Hyp Ref Expression
1 cvmlift2lem9a.b 𝐵 = 𝐶
2 cvmlift2lem9a.y 𝑌 = 𝐾
3 cvmlift2lem9a.s 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑐𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐𝑑 ) = ∅ ∧ ( 𝐹𝑐 ) ∈ ( ( 𝐶t 𝑐 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
4 cvmlift2lem9a.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmlift2lem9a.h ( 𝜑𝐻 : 𝑌𝐵 )
6 cvmlift2lem9a.g ( 𝜑 → ( 𝐹𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) )
7 cvmlift2lem9a.k ( 𝜑𝐾 ∈ Top )
8 cvmlift2lem9a.1 ( 𝜑𝑋𝑌 )
9 cvmlift2lem9a.2 ( 𝜑𝑇 ∈ ( 𝑆𝐴 ) )
10 cvmlift2lem9a.3 ( 𝜑 → ( 𝑊𝑇 ∧ ( 𝐻𝑋 ) ∈ 𝑊 ) )
11 cvmlift2lem9a.4 ( 𝜑𝑀𝑌 )
12 cvmlift2lem9a.6 ( 𝜑 → ( 𝐻𝑀 ) ⊆ 𝑊 )
13 cvmtop1 ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top )
14 4 13 syl ( 𝜑𝐶 ∈ Top )
15 cnrest2r ( 𝐶 ∈ Top → ( ( 𝐾t 𝑀 ) Cn ( 𝐶t 𝑊 ) ) ⊆ ( ( 𝐾t 𝑀 ) Cn 𝐶 ) )
16 14 15 syl ( 𝜑 → ( ( 𝐾t 𝑀 ) Cn ( 𝐶t 𝑊 ) ) ⊆ ( ( 𝐾t 𝑀 ) Cn 𝐶 ) )
17 5 ffnd ( 𝜑𝐻 Fn 𝑌 )
18 fnssres ( ( 𝐻 Fn 𝑌𝑀𝑌 ) → ( 𝐻𝑀 ) Fn 𝑀 )
19 17 11 18 syl2anc ( 𝜑 → ( 𝐻𝑀 ) Fn 𝑀 )
20 df-ima ( 𝐻𝑀 ) = ran ( 𝐻𝑀 )
21 20 12 eqsstrrid ( 𝜑 → ran ( 𝐻𝑀 ) ⊆ 𝑊 )
22 df-f ( ( 𝐻𝑀 ) : 𝑀𝑊 ↔ ( ( 𝐻𝑀 ) Fn 𝑀 ∧ ran ( 𝐻𝑀 ) ⊆ 𝑊 ) )
23 19 21 22 sylanbrc ( 𝜑 → ( 𝐻𝑀 ) : 𝑀𝑊 )
24 10 simpld ( 𝜑𝑊𝑇 )
25 3 cvmsf1o ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆𝐴 ) ∧ 𝑊𝑇 ) → ( 𝐹𝑊 ) : 𝑊1-1-onto𝐴 )
26 4 9 24 25 syl3anc ( 𝜑 → ( 𝐹𝑊 ) : 𝑊1-1-onto𝐴 )
27 26 adantr ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( 𝐹𝑊 ) : 𝑊1-1-onto𝐴 )
28 f1of1 ( ( 𝐹𝑊 ) : 𝑊1-1-onto𝐴 → ( 𝐹𝑊 ) : 𝑊1-1𝐴 )
29 27 28 syl ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( 𝐹𝑊 ) : 𝑊1-1𝐴 )
30 1 toptopon ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) )
31 14 30 sylib ( 𝜑𝐶 ∈ ( TopOn ‘ 𝐵 ) )
32 3 cvmsss ( 𝑇 ∈ ( 𝑆𝐴 ) → 𝑇𝐶 )
33 9 32 syl ( 𝜑𝑇𝐶 )
34 33 24 sseldd ( 𝜑𝑊𝐶 )
35 toponss ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑊𝐶 ) → 𝑊𝐵 )
36 31 34 35 syl2anc ( 𝜑𝑊𝐵 )
37 resttopon ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑊𝐵 ) → ( 𝐶t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) )
38 31 36 37 syl2anc ( 𝜑 → ( 𝐶t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) )
39 toponss ( ( ( 𝐶t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝐶t 𝑊 ) ) → 𝑥𝑊 )
40 38 39 sylan ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → 𝑥𝑊 )
41 f1imacnv ( ( ( 𝐹𝑊 ) : 𝑊1-1𝐴𝑥𝑊 ) → ( ( 𝐹𝑊 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) = 𝑥 )
42 29 40 41 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐹𝑊 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) = 𝑥 )
43 42 imaeq2d ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐻𝑀 ) “ ( ( 𝐹𝑊 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) ) = ( ( 𝐻𝑀 ) “ 𝑥 ) )
44 imaco ( ( ( 𝐻𝑀 ) ∘ ( 𝐹𝑊 ) ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) = ( ( 𝐻𝑀 ) “ ( ( 𝐹𝑊 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) )
45 cnvco ( ( 𝐹𝑊 ) ∘ ( 𝐻𝑀 ) ) = ( ( 𝐻𝑀 ) ∘ ( 𝐹𝑊 ) )
46 cores ( ran ( 𝐻𝑀 ) ⊆ 𝑊 → ( ( 𝐹𝑊 ) ∘ ( 𝐻𝑀 ) ) = ( 𝐹 ∘ ( 𝐻𝑀 ) ) )
47 21 46 syl ( 𝜑 → ( ( 𝐹𝑊 ) ∘ ( 𝐻𝑀 ) ) = ( 𝐹 ∘ ( 𝐻𝑀 ) ) )
48 resco ( ( 𝐹𝐻 ) ↾ 𝑀 ) = ( 𝐹 ∘ ( 𝐻𝑀 ) )
49 47 48 eqtr4di ( 𝜑 → ( ( 𝐹𝑊 ) ∘ ( 𝐻𝑀 ) ) = ( ( 𝐹𝐻 ) ↾ 𝑀 ) )
50 49 adantr ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐹𝑊 ) ∘ ( 𝐻𝑀 ) ) = ( ( 𝐹𝐻 ) ↾ 𝑀 ) )
51 50 cnveqd ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐹𝑊 ) ∘ ( 𝐻𝑀 ) ) = ( ( 𝐹𝐻 ) ↾ 𝑀 ) )
52 45 51 eqtr3id ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐻𝑀 ) ∘ ( 𝐹𝑊 ) ) = ( ( 𝐹𝐻 ) ↾ 𝑀 ) )
53 52 imaeq1d ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( ( 𝐻𝑀 ) ∘ ( 𝐹𝑊 ) ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) = ( ( ( 𝐹𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) )
54 44 53 eqtr3id ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐻𝑀 ) “ ( ( 𝐹𝑊 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) ) = ( ( ( 𝐹𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) )
55 43 54 eqtr3d ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐻𝑀 ) “ 𝑥 ) = ( ( ( 𝐹𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) )
56 2 cnrest ( ( ( 𝐹𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝑀𝑌 ) → ( ( 𝐹𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐽 ) )
57 6 11 56 syl2anc ( 𝜑 → ( ( 𝐹𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐽 ) )
58 57 adantr ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐹𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐽 ) )
59 resima2 ( 𝑥𝑊 → ( ( 𝐹𝑊 ) “ 𝑥 ) = ( 𝐹𝑥 ) )
60 40 59 syl ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐹𝑊 ) “ 𝑥 ) = ( 𝐹𝑥 ) )
61 4 adantr ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
62 restopn2 ( ( 𝐶 ∈ Top ∧ 𝑊𝐶 ) → ( 𝑥 ∈ ( 𝐶t 𝑊 ) ↔ ( 𝑥𝐶𝑥𝑊 ) ) )
63 14 34 62 syl2anc ( 𝜑 → ( 𝑥 ∈ ( 𝐶t 𝑊 ) ↔ ( 𝑥𝐶𝑥𝑊 ) ) )
64 63 simprbda ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → 𝑥𝐶 )
65 cvmopn ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑥𝐶 ) → ( 𝐹𝑥 ) ∈ 𝐽 )
66 61 64 65 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( 𝐹𝑥 ) ∈ 𝐽 )
67 60 66 eqeltrd ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐹𝑊 ) “ 𝑥 ) ∈ 𝐽 )
68 cnima ( ( ( ( 𝐹𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐽 ) ∧ ( ( 𝐹𝑊 ) “ 𝑥 ) ∈ 𝐽 ) → ( ( ( 𝐹𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) ∈ ( 𝐾t 𝑀 ) )
69 58 67 68 syl2anc ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( ( 𝐹𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹𝑊 ) “ 𝑥 ) ) ∈ ( 𝐾t 𝑀 ) )
70 55 69 eqeltrd ( ( 𝜑𝑥 ∈ ( 𝐶t 𝑊 ) ) → ( ( 𝐻𝑀 ) “ 𝑥 ) ∈ ( 𝐾t 𝑀 ) )
71 70 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ ( 𝐶t 𝑊 ) ( ( 𝐻𝑀 ) “ 𝑥 ) ∈ ( 𝐾t 𝑀 ) )
72 2 toptopon ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) )
73 7 72 sylib ( 𝜑𝐾 ∈ ( TopOn ‘ 𝑌 ) )
74 resttopon ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑀𝑌 ) → ( 𝐾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) )
75 73 11 74 syl2anc ( 𝜑 → ( 𝐾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) )
76 iscn ( ( ( 𝐾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ∧ ( 𝐶t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ) → ( ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn ( 𝐶t 𝑊 ) ) ↔ ( ( 𝐻𝑀 ) : 𝑀𝑊 ∧ ∀ 𝑥 ∈ ( 𝐶t 𝑊 ) ( ( 𝐻𝑀 ) “ 𝑥 ) ∈ ( 𝐾t 𝑀 ) ) ) )
77 75 38 76 syl2anc ( 𝜑 → ( ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn ( 𝐶t 𝑊 ) ) ↔ ( ( 𝐻𝑀 ) : 𝑀𝑊 ∧ ∀ 𝑥 ∈ ( 𝐶t 𝑊 ) ( ( 𝐻𝑀 ) “ 𝑥 ) ∈ ( 𝐾t 𝑀 ) ) ) )
78 23 71 77 mpbir2and ( 𝜑 → ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn ( 𝐶t 𝑊 ) ) )
79 16 78 sseldd ( 𝜑 → ( 𝐻𝑀 ) ∈ ( ( 𝐾t 𝑀 ) Cn 𝐶 ) )