| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2lem9a.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift2lem9a.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift2lem9a.s | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑐  ∈  𝑠 ( ∀ 𝑑  ∈  ( 𝑠  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 4 |  | cvmlift2lem9a.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmlift2lem9a.h | ⊢ ( 𝜑  →  𝐻 : 𝑌 ⟶ 𝐵 ) | 
						
							| 6 |  | cvmlift2lem9a.g | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 7 |  | cvmlift2lem9a.k | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 8 |  | cvmlift2lem9a.1 | ⊢ ( 𝜑  →  𝑋  ∈  𝑌 ) | 
						
							| 9 |  | cvmlift2lem9a.2 | ⊢ ( 𝜑  →  𝑇  ∈  ( 𝑆 ‘ 𝐴 ) ) | 
						
							| 10 |  | cvmlift2lem9a.3 | ⊢ ( 𝜑  →  ( 𝑊  ∈  𝑇  ∧  ( 𝐻 ‘ 𝑋 )  ∈  𝑊 ) ) | 
						
							| 11 |  | cvmlift2lem9a.4 | ⊢ ( 𝜑  →  𝑀  ⊆  𝑌 ) | 
						
							| 12 |  | cvmlift2lem9a.6 | ⊢ ( 𝜑  →  ( 𝐻  “  𝑀 )  ⊆  𝑊 ) | 
						
							| 13 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 14 | 4 13 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 15 |  | cnrest2r | ⊢ ( 𝐶  ∈  Top  →  ( ( 𝐾  ↾t  𝑀 )  Cn  ( 𝐶  ↾t  𝑊 ) )  ⊆  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐶 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( ( 𝐾  ↾t  𝑀 )  Cn  ( 𝐶  ↾t  𝑊 ) )  ⊆  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐶 ) ) | 
						
							| 17 | 5 | ffnd | ⊢ ( 𝜑  →  𝐻  Fn  𝑌 ) | 
						
							| 18 |  | fnssres | ⊢ ( ( 𝐻  Fn  𝑌  ∧  𝑀  ⊆  𝑌 )  →  ( 𝐻  ↾  𝑀 )  Fn  𝑀 ) | 
						
							| 19 | 17 11 18 | syl2anc | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑀 )  Fn  𝑀 ) | 
						
							| 20 |  | df-ima | ⊢ ( 𝐻  “  𝑀 )  =  ran  ( 𝐻  ↾  𝑀 ) | 
						
							| 21 | 20 12 | eqsstrrid | ⊢ ( 𝜑  →  ran  ( 𝐻  ↾  𝑀 )  ⊆  𝑊 ) | 
						
							| 22 |  | df-f | ⊢ ( ( 𝐻  ↾  𝑀 ) : 𝑀 ⟶ 𝑊  ↔  ( ( 𝐻  ↾  𝑀 )  Fn  𝑀  ∧  ran  ( 𝐻  ↾  𝑀 )  ⊆  𝑊 ) ) | 
						
							| 23 | 19 21 22 | sylanbrc | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑀 ) : 𝑀 ⟶ 𝑊 ) | 
						
							| 24 | 10 | simpld | ⊢ ( 𝜑  →  𝑊  ∈  𝑇 ) | 
						
							| 25 | 3 | cvmsf1o | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑇  ∈  ( 𝑆 ‘ 𝐴 )  ∧  𝑊  ∈  𝑇 )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝐴 ) | 
						
							| 26 | 4 9 24 25 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝐴 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝐴 ) | 
						
							| 28 |  | f1of1 | ⊢ ( ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1-onto→ 𝐴  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝐴 ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝐴 ) | 
						
							| 30 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 31 | 14 30 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 32 | 3 | cvmsss | ⊢ ( 𝑇  ∈  ( 𝑆 ‘ 𝐴 )  →  𝑇  ⊆  𝐶 ) | 
						
							| 33 | 9 32 | syl | ⊢ ( 𝜑  →  𝑇  ⊆  𝐶 ) | 
						
							| 34 | 33 24 | sseldd | ⊢ ( 𝜑  →  𝑊  ∈  𝐶 ) | 
						
							| 35 |  | toponss | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  𝑊  ∈  𝐶 )  →  𝑊  ⊆  𝐵 ) | 
						
							| 36 | 31 34 35 | syl2anc | ⊢ ( 𝜑  →  𝑊  ⊆  𝐵 ) | 
						
							| 37 |  | resttopon | ⊢ ( ( 𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  𝑊  ⊆  𝐵 )  →  ( 𝐶  ↾t  𝑊 )  ∈  ( TopOn ‘ 𝑊 ) ) | 
						
							| 38 | 31 36 37 | syl2anc | ⊢ ( 𝜑  →  ( 𝐶  ↾t  𝑊 )  ∈  ( TopOn ‘ 𝑊 ) ) | 
						
							| 39 |  | toponss | ⊢ ( ( ( 𝐶  ↾t  𝑊 )  ∈  ( TopOn ‘ 𝑊 )  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  𝑥  ⊆  𝑊 ) | 
						
							| 40 | 38 39 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  𝑥  ⊆  𝑊 ) | 
						
							| 41 |  | f1imacnv | ⊢ ( ( ( 𝐹  ↾  𝑊 ) : 𝑊 –1-1→ 𝐴  ∧  𝑥  ⊆  𝑊 )  →  ( ◡ ( 𝐹  ↾  𝑊 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) )  =  𝑥 ) | 
						
							| 42 | 29 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( 𝐹  ↾  𝑊 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) )  =  𝑥 ) | 
						
							| 43 | 42 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( 𝐻  ↾  𝑀 )  “  ( ◡ ( 𝐹  ↾  𝑊 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) ) )  =  ( ◡ ( 𝐻  ↾  𝑀 )  “  𝑥 ) ) | 
						
							| 44 |  | imaco | ⊢ ( ( ◡ ( 𝐻  ↾  𝑀 )  ∘  ◡ ( 𝐹  ↾  𝑊 ) )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) )  =  ( ◡ ( 𝐻  ↾  𝑀 )  “  ( ◡ ( 𝐹  ↾  𝑊 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) ) ) | 
						
							| 45 |  | cnvco | ⊢ ◡ ( ( 𝐹  ↾  𝑊 )  ∘  ( 𝐻  ↾  𝑀 ) )  =  ( ◡ ( 𝐻  ↾  𝑀 )  ∘  ◡ ( 𝐹  ↾  𝑊 ) ) | 
						
							| 46 |  | cores | ⊢ ( ran  ( 𝐻  ↾  𝑀 )  ⊆  𝑊  →  ( ( 𝐹  ↾  𝑊 )  ∘  ( 𝐻  ↾  𝑀 ) )  =  ( 𝐹  ∘  ( 𝐻  ↾  𝑀 ) ) ) | 
						
							| 47 | 21 46 | syl | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝑊 )  ∘  ( 𝐻  ↾  𝑀 ) )  =  ( 𝐹  ∘  ( 𝐻  ↾  𝑀 ) ) ) | 
						
							| 48 |  | resco | ⊢ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  =  ( 𝐹  ∘  ( 𝐻  ↾  𝑀 ) ) | 
						
							| 49 | 47 48 | eqtr4di | ⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝑊 )  ∘  ( 𝐻  ↾  𝑀 ) )  =  ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ( 𝐹  ↾  𝑊 )  ∘  ( 𝐻  ↾  𝑀 ) )  =  ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 ) ) | 
						
							| 51 | 50 | cnveqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ◡ ( ( 𝐹  ↾  𝑊 )  ∘  ( 𝐻  ↾  𝑀 ) )  =  ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 ) ) | 
						
							| 52 | 45 51 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( 𝐻  ↾  𝑀 )  ∘  ◡ ( 𝐹  ↾  𝑊 ) )  =  ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 ) ) | 
						
							| 53 | 52 | imaeq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ( ◡ ( 𝐻  ↾  𝑀 )  ∘  ◡ ( 𝐹  ↾  𝑊 ) )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) )  =  ( ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) ) ) | 
						
							| 54 | 44 53 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( 𝐻  ↾  𝑀 )  “  ( ◡ ( 𝐹  ↾  𝑊 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) ) )  =  ( ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) ) ) | 
						
							| 55 | 43 54 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( 𝐻  ↾  𝑀 )  “  𝑥 )  =  ( ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) ) ) | 
						
							| 56 | 2 | cnrest | ⊢ ( ( ( 𝐹  ∘  𝐻 )  ∈  ( 𝐾  Cn  𝐽 )  ∧  𝑀  ⊆  𝑌 )  →  ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐽 ) ) | 
						
							| 57 | 6 11 56 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐽 ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐽 ) ) | 
						
							| 59 |  | resima2 | ⊢ ( 𝑥  ⊆  𝑊  →  ( ( 𝐹  ↾  𝑊 )  “  𝑥 )  =  ( 𝐹  “  𝑥 ) ) | 
						
							| 60 | 40 59 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ( 𝐹  ↾  𝑊 )  “  𝑥 )  =  ( 𝐹  “  𝑥 ) ) | 
						
							| 61 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 62 |  | restopn2 | ⊢ ( ( 𝐶  ∈  Top  ∧  𝑊  ∈  𝐶 )  →  ( 𝑥  ∈  ( 𝐶  ↾t  𝑊 )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑥  ⊆  𝑊 ) ) ) | 
						
							| 63 | 14 34 62 | syl2anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐶  ↾t  𝑊 )  ↔  ( 𝑥  ∈  𝐶  ∧  𝑥  ⊆  𝑊 ) ) ) | 
						
							| 64 | 63 | simprbda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 65 |  | cvmopn | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝑥  ∈  𝐶 )  →  ( 𝐹  “  𝑥 )  ∈  𝐽 ) | 
						
							| 66 | 61 64 65 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( 𝐹  “  𝑥 )  ∈  𝐽 ) | 
						
							| 67 | 60 66 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ( 𝐹  ↾  𝑊 )  “  𝑥 )  ∈  𝐽 ) | 
						
							| 68 |  | cnima | ⊢ ( ( ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐽 )  ∧  ( ( 𝐹  ↾  𝑊 )  “  𝑥 )  ∈  𝐽 )  →  ( ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) )  ∈  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 69 | 58 67 68 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( ( 𝐹  ∘  𝐻 )  ↾  𝑀 )  “  ( ( 𝐹  ↾  𝑊 )  “  𝑥 ) )  ∈  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 70 | 55 69 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐶  ↾t  𝑊 ) )  →  ( ◡ ( 𝐻  ↾  𝑀 )  “  𝑥 )  ∈  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 71 | 70 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( 𝐶  ↾t  𝑊 ) ( ◡ ( 𝐻  ↾  𝑀 )  “  𝑥 )  ∈  ( 𝐾  ↾t  𝑀 ) ) | 
						
							| 72 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 73 | 7 72 | sylib | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 74 |  | resttopon | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝑀  ⊆  𝑌 )  →  ( 𝐾  ↾t  𝑀 )  ∈  ( TopOn ‘ 𝑀 ) ) | 
						
							| 75 | 73 11 74 | syl2anc | ⊢ ( 𝜑  →  ( 𝐾  ↾t  𝑀 )  ∈  ( TopOn ‘ 𝑀 ) ) | 
						
							| 76 |  | iscn | ⊢ ( ( ( 𝐾  ↾t  𝑀 )  ∈  ( TopOn ‘ 𝑀 )  ∧  ( 𝐶  ↾t  𝑊 )  ∈  ( TopOn ‘ 𝑊 ) )  →  ( ( 𝐻  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  ( 𝐶  ↾t  𝑊 ) )  ↔  ( ( 𝐻  ↾  𝑀 ) : 𝑀 ⟶ 𝑊  ∧  ∀ 𝑥  ∈  ( 𝐶  ↾t  𝑊 ) ( ◡ ( 𝐻  ↾  𝑀 )  “  𝑥 )  ∈  ( 𝐾  ↾t  𝑀 ) ) ) ) | 
						
							| 77 | 75 38 76 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐻  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  ( 𝐶  ↾t  𝑊 ) )  ↔  ( ( 𝐻  ↾  𝑀 ) : 𝑀 ⟶ 𝑊  ∧  ∀ 𝑥  ∈  ( 𝐶  ↾t  𝑊 ) ( ◡ ( 𝐻  ↾  𝑀 )  “  𝑥 )  ∈  ( 𝐾  ↾t  𝑀 ) ) ) ) | 
						
							| 78 | 23 71 77 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  ( 𝐶  ↾t  𝑊 ) ) ) | 
						
							| 79 | 16 78 | sseldd | ⊢ ( 𝜑  →  ( 𝐻  ↾  𝑀 )  ∈  ( ( 𝐾  ↾t  𝑀 )  Cn  𝐶 ) ) |