Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift2lem9a.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift2lem9a.y |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cvmlift2lem9a.s |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑐 ∈ 𝑠 ( ∀ 𝑑 ∈ ( 𝑠 ∖ { 𝑐 } ) ( 𝑐 ∩ 𝑑 ) = ∅ ∧ ( 𝐹 ↾ 𝑐 ) ∈ ( ( 𝐶 ↾t 𝑐 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
4 |
|
cvmlift2lem9a.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmlift2lem9a.h |
⊢ ( 𝜑 → 𝐻 : 𝑌 ⟶ 𝐵 ) |
6 |
|
cvmlift2lem9a.g |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) ) |
7 |
|
cvmlift2lem9a.k |
⊢ ( 𝜑 → 𝐾 ∈ Top ) |
8 |
|
cvmlift2lem9a.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑌 ) |
9 |
|
cvmlift2lem9a.2 |
⊢ ( 𝜑 → 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ) |
10 |
|
cvmlift2lem9a.3 |
⊢ ( 𝜑 → ( 𝑊 ∈ 𝑇 ∧ ( 𝐻 ‘ 𝑋 ) ∈ 𝑊 ) ) |
11 |
|
cvmlift2lem9a.4 |
⊢ ( 𝜑 → 𝑀 ⊆ 𝑌 ) |
12 |
|
cvmlift2lem9a.6 |
⊢ ( 𝜑 → ( 𝐻 “ 𝑀 ) ⊆ 𝑊 ) |
13 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
15 |
|
cnrest2r |
⊢ ( 𝐶 ∈ Top → ( ( 𝐾 ↾t 𝑀 ) Cn ( 𝐶 ↾t 𝑊 ) ) ⊆ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐶 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ( 𝐾 ↾t 𝑀 ) Cn ( 𝐶 ↾t 𝑊 ) ) ⊆ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐶 ) ) |
17 |
5
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn 𝑌 ) |
18 |
|
fnssres |
⊢ ( ( 𝐻 Fn 𝑌 ∧ 𝑀 ⊆ 𝑌 ) → ( 𝐻 ↾ 𝑀 ) Fn 𝑀 ) |
19 |
17 11 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑀 ) Fn 𝑀 ) |
20 |
|
df-ima |
⊢ ( 𝐻 “ 𝑀 ) = ran ( 𝐻 ↾ 𝑀 ) |
21 |
20 12
|
eqsstrrid |
⊢ ( 𝜑 → ran ( 𝐻 ↾ 𝑀 ) ⊆ 𝑊 ) |
22 |
|
df-f |
⊢ ( ( 𝐻 ↾ 𝑀 ) : 𝑀 ⟶ 𝑊 ↔ ( ( 𝐻 ↾ 𝑀 ) Fn 𝑀 ∧ ran ( 𝐻 ↾ 𝑀 ) ⊆ 𝑊 ) ) |
23 |
19 21 22
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑀 ) : 𝑀 ⟶ 𝑊 ) |
24 |
10
|
simpld |
⊢ ( 𝜑 → 𝑊 ∈ 𝑇 ) |
25 |
3
|
cvmsf1o |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) ∧ 𝑊 ∈ 𝑇 ) → ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝐴 ) |
26 |
4 9 24 25
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝐴 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝐴 ) |
28 |
|
f1of1 |
⊢ ( ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1-onto→ 𝐴 → ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1→ 𝐴 ) |
29 |
27 28
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1→ 𝐴 ) |
30 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
31 |
14 30
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
32 |
3
|
cvmsss |
⊢ ( 𝑇 ∈ ( 𝑆 ‘ 𝐴 ) → 𝑇 ⊆ 𝐶 ) |
33 |
9 32
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ 𝐶 ) |
34 |
33 24
|
sseldd |
⊢ ( 𝜑 → 𝑊 ∈ 𝐶 ) |
35 |
|
toponss |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑊 ∈ 𝐶 ) → 𝑊 ⊆ 𝐵 ) |
36 |
31 34 35
|
syl2anc |
⊢ ( 𝜑 → 𝑊 ⊆ 𝐵 ) |
37 |
|
resttopon |
⊢ ( ( 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝑊 ⊆ 𝐵 ) → ( 𝐶 ↾t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ) |
38 |
31 36 37
|
syl2anc |
⊢ ( 𝜑 → ( 𝐶 ↾t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ) |
39 |
|
toponss |
⊢ ( ( ( 𝐶 ↾t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → 𝑥 ⊆ 𝑊 ) |
40 |
38 39
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → 𝑥 ⊆ 𝑊 ) |
41 |
|
f1imacnv |
⊢ ( ( ( 𝐹 ↾ 𝑊 ) : 𝑊 –1-1→ 𝐴 ∧ 𝑥 ⊆ 𝑊 ) → ( ◡ ( 𝐹 ↾ 𝑊 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) = 𝑥 ) |
42 |
29 40 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( 𝐹 ↾ 𝑊 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) = 𝑥 ) |
43 |
42
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( 𝐻 ↾ 𝑀 ) “ ( ◡ ( 𝐹 ↾ 𝑊 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ) = ( ◡ ( 𝐻 ↾ 𝑀 ) “ 𝑥 ) ) |
44 |
|
imaco |
⊢ ( ( ◡ ( 𝐻 ↾ 𝑀 ) ∘ ◡ ( 𝐹 ↾ 𝑊 ) ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) = ( ◡ ( 𝐻 ↾ 𝑀 ) “ ( ◡ ( 𝐹 ↾ 𝑊 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ) |
45 |
|
cnvco |
⊢ ◡ ( ( 𝐹 ↾ 𝑊 ) ∘ ( 𝐻 ↾ 𝑀 ) ) = ( ◡ ( 𝐻 ↾ 𝑀 ) ∘ ◡ ( 𝐹 ↾ 𝑊 ) ) |
46 |
|
cores |
⊢ ( ran ( 𝐻 ↾ 𝑀 ) ⊆ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) ∘ ( 𝐻 ↾ 𝑀 ) ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑀 ) ) ) |
47 |
21 46
|
syl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) ∘ ( 𝐻 ↾ 𝑀 ) ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑀 ) ) ) |
48 |
|
resco |
⊢ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) = ( 𝐹 ∘ ( 𝐻 ↾ 𝑀 ) ) |
49 |
47 48
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑊 ) ∘ ( 𝐻 ↾ 𝑀 ) ) = ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ) |
50 |
49
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ( 𝐹 ↾ 𝑊 ) ∘ ( 𝐻 ↾ 𝑀 ) ) = ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ) |
51 |
50
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ◡ ( ( 𝐹 ↾ 𝑊 ) ∘ ( 𝐻 ↾ 𝑀 ) ) = ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ) |
52 |
45 51
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( 𝐻 ↾ 𝑀 ) ∘ ◡ ( 𝐹 ↾ 𝑊 ) ) = ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ) |
53 |
52
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ( ◡ ( 𝐻 ↾ 𝑀 ) ∘ ◡ ( 𝐹 ↾ 𝑊 ) ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) = ( ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ) |
54 |
44 53
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( 𝐻 ↾ 𝑀 ) “ ( ◡ ( 𝐹 ↾ 𝑊 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ) = ( ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ) |
55 |
43 54
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( 𝐻 ↾ 𝑀 ) “ 𝑥 ) = ( ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ) |
56 |
2
|
cnrest |
⊢ ( ( ( 𝐹 ∘ 𝐻 ) ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝑀 ⊆ 𝑌 ) → ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐽 ) ) |
57 |
6 11 56
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐽 ) ) |
58 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐽 ) ) |
59 |
|
resima2 |
⊢ ( 𝑥 ⊆ 𝑊 → ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) |
60 |
40 59
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) = ( 𝐹 “ 𝑥 ) ) |
61 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
62 |
|
restopn2 |
⊢ ( ( 𝐶 ∈ Top ∧ 𝑊 ∈ 𝐶 ) → ( 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ⊆ 𝑊 ) ) ) |
63 |
14 34 62
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ⊆ 𝑊 ) ) ) |
64 |
63
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → 𝑥 ∈ 𝐶 ) |
65 |
|
cvmopn |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
66 |
61 64 65
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( 𝐹 “ 𝑥 ) ∈ 𝐽 ) |
67 |
60 66
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ∈ 𝐽 ) |
68 |
|
cnima |
⊢ ( ( ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐽 ) ∧ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ∈ 𝐽 ) → ( ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ∈ ( 𝐾 ↾t 𝑀 ) ) |
69 |
58 67 68
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( ( 𝐹 ∘ 𝐻 ) ↾ 𝑀 ) “ ( ( 𝐹 ↾ 𝑊 ) “ 𝑥 ) ) ∈ ( 𝐾 ↾t 𝑀 ) ) |
70 |
55 69
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ) → ( ◡ ( 𝐻 ↾ 𝑀 ) “ 𝑥 ) ∈ ( 𝐾 ↾t 𝑀 ) ) |
71 |
70
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ( ◡ ( 𝐻 ↾ 𝑀 ) “ 𝑥 ) ∈ ( 𝐾 ↾t 𝑀 ) ) |
72 |
2
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
73 |
7 72
|
sylib |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
74 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑀 ⊆ 𝑌 ) → ( 𝐾 ↾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ) |
75 |
73 11 74
|
syl2anc |
⊢ ( 𝜑 → ( 𝐾 ↾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ) |
76 |
|
iscn |
⊢ ( ( ( 𝐾 ↾t 𝑀 ) ∈ ( TopOn ‘ 𝑀 ) ∧ ( 𝐶 ↾t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ) → ( ( 𝐻 ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn ( 𝐶 ↾t 𝑊 ) ) ↔ ( ( 𝐻 ↾ 𝑀 ) : 𝑀 ⟶ 𝑊 ∧ ∀ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ( ◡ ( 𝐻 ↾ 𝑀 ) “ 𝑥 ) ∈ ( 𝐾 ↾t 𝑀 ) ) ) ) |
77 |
75 38 76
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn ( 𝐶 ↾t 𝑊 ) ) ↔ ( ( 𝐻 ↾ 𝑀 ) : 𝑀 ⟶ 𝑊 ∧ ∀ 𝑥 ∈ ( 𝐶 ↾t 𝑊 ) ( ◡ ( 𝐻 ↾ 𝑀 ) “ 𝑥 ) ∈ ( 𝐾 ↾t 𝑀 ) ) ) ) |
78 |
23 71 77
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn ( 𝐶 ↾t 𝑊 ) ) ) |
79 |
16 78
|
sseldd |
⊢ ( 𝜑 → ( 𝐻 ↾ 𝑀 ) ∈ ( ( 𝐾 ↾t 𝑀 ) Cn 𝐶 ) ) |