| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift2lem9a.b |
|- B = U. C |
| 2 |
|
cvmlift2lem9a.y |
|- Y = U. K |
| 3 |
|
cvmlift2lem9a.s |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) |
| 4 |
|
cvmlift2lem9a.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmlift2lem9a.h |
|- ( ph -> H : Y --> B ) |
| 6 |
|
cvmlift2lem9a.g |
|- ( ph -> ( F o. H ) e. ( K Cn J ) ) |
| 7 |
|
cvmlift2lem9a.k |
|- ( ph -> K e. Top ) |
| 8 |
|
cvmlift2lem9a.1 |
|- ( ph -> X e. Y ) |
| 9 |
|
cvmlift2lem9a.2 |
|- ( ph -> T e. ( S ` A ) ) |
| 10 |
|
cvmlift2lem9a.3 |
|- ( ph -> ( W e. T /\ ( H ` X ) e. W ) ) |
| 11 |
|
cvmlift2lem9a.4 |
|- ( ph -> M C_ Y ) |
| 12 |
|
cvmlift2lem9a.6 |
|- ( ph -> ( H " M ) C_ W ) |
| 13 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
| 14 |
4 13
|
syl |
|- ( ph -> C e. Top ) |
| 15 |
|
cnrest2r |
|- ( C e. Top -> ( ( K |`t M ) Cn ( C |`t W ) ) C_ ( ( K |`t M ) Cn C ) ) |
| 16 |
14 15
|
syl |
|- ( ph -> ( ( K |`t M ) Cn ( C |`t W ) ) C_ ( ( K |`t M ) Cn C ) ) |
| 17 |
5
|
ffnd |
|- ( ph -> H Fn Y ) |
| 18 |
|
fnssres |
|- ( ( H Fn Y /\ M C_ Y ) -> ( H |` M ) Fn M ) |
| 19 |
17 11 18
|
syl2anc |
|- ( ph -> ( H |` M ) Fn M ) |
| 20 |
|
df-ima |
|- ( H " M ) = ran ( H |` M ) |
| 21 |
20 12
|
eqsstrrid |
|- ( ph -> ran ( H |` M ) C_ W ) |
| 22 |
|
df-f |
|- ( ( H |` M ) : M --> W <-> ( ( H |` M ) Fn M /\ ran ( H |` M ) C_ W ) ) |
| 23 |
19 21 22
|
sylanbrc |
|- ( ph -> ( H |` M ) : M --> W ) |
| 24 |
10
|
simpld |
|- ( ph -> W e. T ) |
| 25 |
3
|
cvmsf1o |
|- ( ( F e. ( C CovMap J ) /\ T e. ( S ` A ) /\ W e. T ) -> ( F |` W ) : W -1-1-onto-> A ) |
| 26 |
4 9 24 25
|
syl3anc |
|- ( ph -> ( F |` W ) : W -1-1-onto-> A ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( F |` W ) : W -1-1-onto-> A ) |
| 28 |
|
f1of1 |
|- ( ( F |` W ) : W -1-1-onto-> A -> ( F |` W ) : W -1-1-> A ) |
| 29 |
27 28
|
syl |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( F |` W ) : W -1-1-> A ) |
| 30 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
| 31 |
14 30
|
sylib |
|- ( ph -> C e. ( TopOn ` B ) ) |
| 32 |
3
|
cvmsss |
|- ( T e. ( S ` A ) -> T C_ C ) |
| 33 |
9 32
|
syl |
|- ( ph -> T C_ C ) |
| 34 |
33 24
|
sseldd |
|- ( ph -> W e. C ) |
| 35 |
|
toponss |
|- ( ( C e. ( TopOn ` B ) /\ W e. C ) -> W C_ B ) |
| 36 |
31 34 35
|
syl2anc |
|- ( ph -> W C_ B ) |
| 37 |
|
resttopon |
|- ( ( C e. ( TopOn ` B ) /\ W C_ B ) -> ( C |`t W ) e. ( TopOn ` W ) ) |
| 38 |
31 36 37
|
syl2anc |
|- ( ph -> ( C |`t W ) e. ( TopOn ` W ) ) |
| 39 |
|
toponss |
|- ( ( ( C |`t W ) e. ( TopOn ` W ) /\ x e. ( C |`t W ) ) -> x C_ W ) |
| 40 |
38 39
|
sylan |
|- ( ( ph /\ x e. ( C |`t W ) ) -> x C_ W ) |
| 41 |
|
f1imacnv |
|- ( ( ( F |` W ) : W -1-1-> A /\ x C_ W ) -> ( `' ( F |` W ) " ( ( F |` W ) " x ) ) = x ) |
| 42 |
29 40 41
|
syl2anc |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( F |` W ) " ( ( F |` W ) " x ) ) = x ) |
| 43 |
42
|
imaeq2d |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " ( `' ( F |` W ) " ( ( F |` W ) " x ) ) ) = ( `' ( H |` M ) " x ) ) |
| 44 |
|
imaco |
|- ( ( `' ( H |` M ) o. `' ( F |` W ) ) " ( ( F |` W ) " x ) ) = ( `' ( H |` M ) " ( `' ( F |` W ) " ( ( F |` W ) " x ) ) ) |
| 45 |
|
cnvco |
|- `' ( ( F |` W ) o. ( H |` M ) ) = ( `' ( H |` M ) o. `' ( F |` W ) ) |
| 46 |
|
cores |
|- ( ran ( H |` M ) C_ W -> ( ( F |` W ) o. ( H |` M ) ) = ( F o. ( H |` M ) ) ) |
| 47 |
21 46
|
syl |
|- ( ph -> ( ( F |` W ) o. ( H |` M ) ) = ( F o. ( H |` M ) ) ) |
| 48 |
|
resco |
|- ( ( F o. H ) |` M ) = ( F o. ( H |` M ) ) |
| 49 |
47 48
|
eqtr4di |
|- ( ph -> ( ( F |` W ) o. ( H |` M ) ) = ( ( F o. H ) |` M ) ) |
| 50 |
49
|
adantr |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F |` W ) o. ( H |` M ) ) = ( ( F o. H ) |` M ) ) |
| 51 |
50
|
cnveqd |
|- ( ( ph /\ x e. ( C |`t W ) ) -> `' ( ( F |` W ) o. ( H |` M ) ) = `' ( ( F o. H ) |` M ) ) |
| 52 |
45 51
|
eqtr3id |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) o. `' ( F |` W ) ) = `' ( ( F o. H ) |` M ) ) |
| 53 |
52
|
imaeq1d |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( ( `' ( H |` M ) o. `' ( F |` W ) ) " ( ( F |` W ) " x ) ) = ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) ) |
| 54 |
44 53
|
eqtr3id |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " ( `' ( F |` W ) " ( ( F |` W ) " x ) ) ) = ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) ) |
| 55 |
43 54
|
eqtr3d |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " x ) = ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) ) |
| 56 |
2
|
cnrest |
|- ( ( ( F o. H ) e. ( K Cn J ) /\ M C_ Y ) -> ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) ) |
| 57 |
6 11 56
|
syl2anc |
|- ( ph -> ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) ) |
| 59 |
|
resima2 |
|- ( x C_ W -> ( ( F |` W ) " x ) = ( F " x ) ) |
| 60 |
40 59
|
syl |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F |` W ) " x ) = ( F " x ) ) |
| 61 |
4
|
adantr |
|- ( ( ph /\ x e. ( C |`t W ) ) -> F e. ( C CovMap J ) ) |
| 62 |
|
restopn2 |
|- ( ( C e. Top /\ W e. C ) -> ( x e. ( C |`t W ) <-> ( x e. C /\ x C_ W ) ) ) |
| 63 |
14 34 62
|
syl2anc |
|- ( ph -> ( x e. ( C |`t W ) <-> ( x e. C /\ x C_ W ) ) ) |
| 64 |
63
|
simprbda |
|- ( ( ph /\ x e. ( C |`t W ) ) -> x e. C ) |
| 65 |
|
cvmopn |
|- ( ( F e. ( C CovMap J ) /\ x e. C ) -> ( F " x ) e. J ) |
| 66 |
61 64 65
|
syl2anc |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( F " x ) e. J ) |
| 67 |
60 66
|
eqeltrd |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F |` W ) " x ) e. J ) |
| 68 |
|
cnima |
|- ( ( ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) /\ ( ( F |` W ) " x ) e. J ) -> ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) e. ( K |`t M ) ) |
| 69 |
58 67 68
|
syl2anc |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) e. ( K |`t M ) ) |
| 70 |
55 69
|
eqeltrd |
|- ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " x ) e. ( K |`t M ) ) |
| 71 |
70
|
ralrimiva |
|- ( ph -> A. x e. ( C |`t W ) ( `' ( H |` M ) " x ) e. ( K |`t M ) ) |
| 72 |
2
|
toptopon |
|- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 73 |
7 72
|
sylib |
|- ( ph -> K e. ( TopOn ` Y ) ) |
| 74 |
|
resttopon |
|- ( ( K e. ( TopOn ` Y ) /\ M C_ Y ) -> ( K |`t M ) e. ( TopOn ` M ) ) |
| 75 |
73 11 74
|
syl2anc |
|- ( ph -> ( K |`t M ) e. ( TopOn ` M ) ) |
| 76 |
|
iscn |
|- ( ( ( K |`t M ) e. ( TopOn ` M ) /\ ( C |`t W ) e. ( TopOn ` W ) ) -> ( ( H |` M ) e. ( ( K |`t M ) Cn ( C |`t W ) ) <-> ( ( H |` M ) : M --> W /\ A. x e. ( C |`t W ) ( `' ( H |` M ) " x ) e. ( K |`t M ) ) ) ) |
| 77 |
75 38 76
|
syl2anc |
|- ( ph -> ( ( H |` M ) e. ( ( K |`t M ) Cn ( C |`t W ) ) <-> ( ( H |` M ) : M --> W /\ A. x e. ( C |`t W ) ( `' ( H |` M ) " x ) e. ( K |`t M ) ) ) ) |
| 78 |
23 71 77
|
mpbir2and |
|- ( ph -> ( H |` M ) e. ( ( K |`t M ) Cn ( C |`t W ) ) ) |
| 79 |
16 78
|
sseldd |
|- ( ph -> ( H |` M ) e. ( ( K |`t M ) Cn C ) ) |