| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift2lem9a.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift2lem9a.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift2lem9a.s |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 4 |  | cvmlift2lem9a.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmlift2lem9a.h |  |-  ( ph -> H : Y --> B ) | 
						
							| 6 |  | cvmlift2lem9a.g |  |-  ( ph -> ( F o. H ) e. ( K Cn J ) ) | 
						
							| 7 |  | cvmlift2lem9a.k |  |-  ( ph -> K e. Top ) | 
						
							| 8 |  | cvmlift2lem9a.1 |  |-  ( ph -> X e. Y ) | 
						
							| 9 |  | cvmlift2lem9a.2 |  |-  ( ph -> T e. ( S ` A ) ) | 
						
							| 10 |  | cvmlift2lem9a.3 |  |-  ( ph -> ( W e. T /\ ( H ` X ) e. W ) ) | 
						
							| 11 |  | cvmlift2lem9a.4 |  |-  ( ph -> M C_ Y ) | 
						
							| 12 |  | cvmlift2lem9a.6 |  |-  ( ph -> ( H " M ) C_ W ) | 
						
							| 13 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 14 | 4 13 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 15 |  | cnrest2r |  |-  ( C e. Top -> ( ( K |`t M ) Cn ( C |`t W ) ) C_ ( ( K |`t M ) Cn C ) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ph -> ( ( K |`t M ) Cn ( C |`t W ) ) C_ ( ( K |`t M ) Cn C ) ) | 
						
							| 17 | 5 | ffnd |  |-  ( ph -> H Fn Y ) | 
						
							| 18 |  | fnssres |  |-  ( ( H Fn Y /\ M C_ Y ) -> ( H |` M ) Fn M ) | 
						
							| 19 | 17 11 18 | syl2anc |  |-  ( ph -> ( H |` M ) Fn M ) | 
						
							| 20 |  | df-ima |  |-  ( H " M ) = ran ( H |` M ) | 
						
							| 21 | 20 12 | eqsstrrid |  |-  ( ph -> ran ( H |` M ) C_ W ) | 
						
							| 22 |  | df-f |  |-  ( ( H |` M ) : M --> W <-> ( ( H |` M ) Fn M /\ ran ( H |` M ) C_ W ) ) | 
						
							| 23 | 19 21 22 | sylanbrc |  |-  ( ph -> ( H |` M ) : M --> W ) | 
						
							| 24 | 10 | simpld |  |-  ( ph -> W e. T ) | 
						
							| 25 | 3 | cvmsf1o |  |-  ( ( F e. ( C CovMap J ) /\ T e. ( S ` A ) /\ W e. T ) -> ( F |` W ) : W -1-1-onto-> A ) | 
						
							| 26 | 4 9 24 25 | syl3anc |  |-  ( ph -> ( F |` W ) : W -1-1-onto-> A ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( F |` W ) : W -1-1-onto-> A ) | 
						
							| 28 |  | f1of1 |  |-  ( ( F |` W ) : W -1-1-onto-> A -> ( F |` W ) : W -1-1-> A ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( F |` W ) : W -1-1-> A ) | 
						
							| 30 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 31 | 14 30 | sylib |  |-  ( ph -> C e. ( TopOn ` B ) ) | 
						
							| 32 | 3 | cvmsss |  |-  ( T e. ( S ` A ) -> T C_ C ) | 
						
							| 33 | 9 32 | syl |  |-  ( ph -> T C_ C ) | 
						
							| 34 | 33 24 | sseldd |  |-  ( ph -> W e. C ) | 
						
							| 35 |  | toponss |  |-  ( ( C e. ( TopOn ` B ) /\ W e. C ) -> W C_ B ) | 
						
							| 36 | 31 34 35 | syl2anc |  |-  ( ph -> W C_ B ) | 
						
							| 37 |  | resttopon |  |-  ( ( C e. ( TopOn ` B ) /\ W C_ B ) -> ( C |`t W ) e. ( TopOn ` W ) ) | 
						
							| 38 | 31 36 37 | syl2anc |  |-  ( ph -> ( C |`t W ) e. ( TopOn ` W ) ) | 
						
							| 39 |  | toponss |  |-  ( ( ( C |`t W ) e. ( TopOn ` W ) /\ x e. ( C |`t W ) ) -> x C_ W ) | 
						
							| 40 | 38 39 | sylan |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> x C_ W ) | 
						
							| 41 |  | f1imacnv |  |-  ( ( ( F |` W ) : W -1-1-> A /\ x C_ W ) -> ( `' ( F |` W ) " ( ( F |` W ) " x ) ) = x ) | 
						
							| 42 | 29 40 41 | syl2anc |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( F |` W ) " ( ( F |` W ) " x ) ) = x ) | 
						
							| 43 | 42 | imaeq2d |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " ( `' ( F |` W ) " ( ( F |` W ) " x ) ) ) = ( `' ( H |` M ) " x ) ) | 
						
							| 44 |  | imaco |  |-  ( ( `' ( H |` M ) o. `' ( F |` W ) ) " ( ( F |` W ) " x ) ) = ( `' ( H |` M ) " ( `' ( F |` W ) " ( ( F |` W ) " x ) ) ) | 
						
							| 45 |  | cnvco |  |-  `' ( ( F |` W ) o. ( H |` M ) ) = ( `' ( H |` M ) o. `' ( F |` W ) ) | 
						
							| 46 |  | cores |  |-  ( ran ( H |` M ) C_ W -> ( ( F |` W ) o. ( H |` M ) ) = ( F o. ( H |` M ) ) ) | 
						
							| 47 | 21 46 | syl |  |-  ( ph -> ( ( F |` W ) o. ( H |` M ) ) = ( F o. ( H |` M ) ) ) | 
						
							| 48 |  | resco |  |-  ( ( F o. H ) |` M ) = ( F o. ( H |` M ) ) | 
						
							| 49 | 47 48 | eqtr4di |  |-  ( ph -> ( ( F |` W ) o. ( H |` M ) ) = ( ( F o. H ) |` M ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F |` W ) o. ( H |` M ) ) = ( ( F o. H ) |` M ) ) | 
						
							| 51 | 50 | cnveqd |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> `' ( ( F |` W ) o. ( H |` M ) ) = `' ( ( F o. H ) |` M ) ) | 
						
							| 52 | 45 51 | eqtr3id |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) o. `' ( F |` W ) ) = `' ( ( F o. H ) |` M ) ) | 
						
							| 53 | 52 | imaeq1d |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( ( `' ( H |` M ) o. `' ( F |` W ) ) " ( ( F |` W ) " x ) ) = ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) ) | 
						
							| 54 | 44 53 | eqtr3id |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " ( `' ( F |` W ) " ( ( F |` W ) " x ) ) ) = ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) ) | 
						
							| 55 | 43 54 | eqtr3d |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " x ) = ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) ) | 
						
							| 56 | 2 | cnrest |  |-  ( ( ( F o. H ) e. ( K Cn J ) /\ M C_ Y ) -> ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) ) | 
						
							| 57 | 6 11 56 | syl2anc |  |-  ( ph -> ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) ) | 
						
							| 59 |  | resima2 |  |-  ( x C_ W -> ( ( F |` W ) " x ) = ( F " x ) ) | 
						
							| 60 | 40 59 | syl |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F |` W ) " x ) = ( F " x ) ) | 
						
							| 61 | 4 | adantr |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> F e. ( C CovMap J ) ) | 
						
							| 62 |  | restopn2 |  |-  ( ( C e. Top /\ W e. C ) -> ( x e. ( C |`t W ) <-> ( x e. C /\ x C_ W ) ) ) | 
						
							| 63 | 14 34 62 | syl2anc |  |-  ( ph -> ( x e. ( C |`t W ) <-> ( x e. C /\ x C_ W ) ) ) | 
						
							| 64 | 63 | simprbda |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> x e. C ) | 
						
							| 65 |  | cvmopn |  |-  ( ( F e. ( C CovMap J ) /\ x e. C ) -> ( F " x ) e. J ) | 
						
							| 66 | 61 64 65 | syl2anc |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( F " x ) e. J ) | 
						
							| 67 | 60 66 | eqeltrd |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( ( F |` W ) " x ) e. J ) | 
						
							| 68 |  | cnima |  |-  ( ( ( ( F o. H ) |` M ) e. ( ( K |`t M ) Cn J ) /\ ( ( F |` W ) " x ) e. J ) -> ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) e. ( K |`t M ) ) | 
						
							| 69 | 58 67 68 | syl2anc |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( ( F o. H ) |` M ) " ( ( F |` W ) " x ) ) e. ( K |`t M ) ) | 
						
							| 70 | 55 69 | eqeltrd |  |-  ( ( ph /\ x e. ( C |`t W ) ) -> ( `' ( H |` M ) " x ) e. ( K |`t M ) ) | 
						
							| 71 | 70 | ralrimiva |  |-  ( ph -> A. x e. ( C |`t W ) ( `' ( H |` M ) " x ) e. ( K |`t M ) ) | 
						
							| 72 | 2 | toptopon |  |-  ( K e. Top <-> K e. ( TopOn ` Y ) ) | 
						
							| 73 | 7 72 | sylib |  |-  ( ph -> K e. ( TopOn ` Y ) ) | 
						
							| 74 |  | resttopon |  |-  ( ( K e. ( TopOn ` Y ) /\ M C_ Y ) -> ( K |`t M ) e. ( TopOn ` M ) ) | 
						
							| 75 | 73 11 74 | syl2anc |  |-  ( ph -> ( K |`t M ) e. ( TopOn ` M ) ) | 
						
							| 76 |  | iscn |  |-  ( ( ( K |`t M ) e. ( TopOn ` M ) /\ ( C |`t W ) e. ( TopOn ` W ) ) -> ( ( H |` M ) e. ( ( K |`t M ) Cn ( C |`t W ) ) <-> ( ( H |` M ) : M --> W /\ A. x e. ( C |`t W ) ( `' ( H |` M ) " x ) e. ( K |`t M ) ) ) ) | 
						
							| 77 | 75 38 76 | syl2anc |  |-  ( ph -> ( ( H |` M ) e. ( ( K |`t M ) Cn ( C |`t W ) ) <-> ( ( H |` M ) : M --> W /\ A. x e. ( C |`t W ) ( `' ( H |` M ) " x ) e. ( K |`t M ) ) ) ) | 
						
							| 78 | 23 71 77 | mpbir2and |  |-  ( ph -> ( H |` M ) e. ( ( K |`t M ) Cn ( C |`t W ) ) ) | 
						
							| 79 | 16 78 | sseldd |  |-  ( ph -> ( H |` M ) e. ( ( K |`t M ) Cn C ) ) |