| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | eqeq2 |  |-  ( b = z -> ( ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = b <-> ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) ) | 
						
							| 11 | 10 | 3anbi3d |  |-  ( b = z -> ( ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = b ) <-> ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 12 | 11 | rexbidv |  |-  ( b = z -> ( E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = b ) <-> E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 13 | 12 | cbvriotavw |  |-  ( iota_ b e. B E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = b ) ) = ( iota_ z e. B E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) ) | 
						
							| 14 |  | fveq1 |  |-  ( c = f -> ( c ` 0 ) = ( f ` 0 ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( c = f -> ( ( c ` 0 ) = O <-> ( f ` 0 ) = O ) ) | 
						
							| 16 |  | fveq1 |  |-  ( c = f -> ( c ` 1 ) = ( f ` 1 ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( c = f -> ( ( c ` 1 ) = a <-> ( f ` 1 ) = a ) ) | 
						
							| 18 |  | coeq2 |  |-  ( d = g -> ( F o. d ) = ( F o. g ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( d = g -> ( ( F o. d ) = ( G o. c ) <-> ( F o. g ) = ( G o. c ) ) ) | 
						
							| 20 |  | fveq1 |  |-  ( d = g -> ( d ` 0 ) = ( g ` 0 ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( d = g -> ( ( d ` 0 ) = P <-> ( g ` 0 ) = P ) ) | 
						
							| 22 | 19 21 | anbi12d |  |-  ( d = g -> ( ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. c ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 23 | 22 | cbvriotavw |  |-  ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. c ) /\ ( g ` 0 ) = P ) ) | 
						
							| 24 |  | coeq2 |  |-  ( c = f -> ( G o. c ) = ( G o. f ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( c = f -> ( ( F o. g ) = ( G o. c ) <-> ( F o. g ) = ( G o. f ) ) ) | 
						
							| 26 | 25 | anbi1d |  |-  ( c = f -> ( ( ( F o. g ) = ( G o. c ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 27 | 26 | riotabidv |  |-  ( c = f -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. c ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 28 | 23 27 | eqtrid |  |-  ( c = f -> ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 29 | 28 | fveq1d |  |-  ( c = f -> ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) | 
						
							| 30 | 29 | eqeq1d |  |-  ( c = f -> ( ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) | 
						
							| 31 | 15 17 30 | 3anbi123d |  |-  ( c = f -> ( ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = a /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 32 | 31 | cbvrexvw |  |-  ( E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = a /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) | 
						
							| 33 |  | eqeq2 |  |-  ( a = x -> ( ( f ` 1 ) = a <-> ( f ` 1 ) = x ) ) | 
						
							| 34 | 33 | 3anbi2d |  |-  ( a = x -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = a /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( a = x -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = a /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 36 | 32 35 | bitrid |  |-  ( a = x -> ( E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 37 | 36 | riotabidv |  |-  ( a = x -> ( iota_ z e. B E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = z ) ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 38 | 13 37 | eqtrid |  |-  ( a = x -> ( iota_ b e. B E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = b ) ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 39 | 38 | cbvmptv |  |-  ( a e. Y |-> ( iota_ b e. B E. c e. ( II Cn K ) ( ( c ` 0 ) = O /\ ( c ` 1 ) = a /\ ( ( iota_ d e. ( II Cn C ) ( ( F o. d ) = ( G o. c ) /\ ( d ` 0 ) = P ) ) ` 1 ) = b ) ) ) = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 40 |  | eqid |  |-  ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 41 | 40 | cvmscbv |  |-  ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) = ( a e. J |-> { b e. ( ~P C \ { (/) } ) | ( U. b = ( `' F " a ) /\ A. v e. b ( A. u e. ( b \ { v } ) ( v i^i u ) = (/) /\ ( F |` v ) e. ( ( C |`t v ) Homeo ( J |`t a ) ) ) ) } ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 9 39 41 | cvmlift3lem9 |  |-  ( ph -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) | 
						
							| 43 |  | sconnpconn |  |-  ( K e. SConn -> K e. PConn ) | 
						
							| 44 |  | pconnconn |  |-  ( K e. PConn -> K e. Conn ) | 
						
							| 45 | 4 43 44 | 3syl |  |-  ( ph -> K e. Conn ) | 
						
							| 46 |  | pconnconn |  |-  ( x e. PConn -> x e. Conn ) | 
						
							| 47 | 46 | ssriv |  |-  PConn C_ Conn | 
						
							| 48 |  | nllyss |  |-  ( PConn C_ Conn -> N-Locally PConn C_ N-Locally Conn ) | 
						
							| 49 | 47 48 | ax-mp |  |-  N-Locally PConn C_ N-Locally Conn | 
						
							| 50 | 49 5 | sselid |  |-  ( ph -> K e. N-Locally Conn ) | 
						
							| 51 | 1 2 3 45 50 6 7 8 9 | cvmliftmo |  |-  ( ph -> E* f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) | 
						
							| 52 |  | reu5 |  |-  ( E! f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> ( E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ E* f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) ) | 
						
							| 53 | 42 51 52 | sylanbrc |  |-  ( ph -> E! f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |