| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | cvmlift3.h |  |-  H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 11 |  | cvmlift3lem7.s |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 11 | cvmlift3lem8 |  |-  ( ph -> H e. ( K Cn C ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem5 |  |-  ( ph -> ( F o. H ) = G ) | 
						
							| 14 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 16 |  | sconntop |  |-  ( K e. SConn -> K e. Top ) | 
						
							| 17 | 4 16 | syl |  |-  ( ph -> K e. Top ) | 
						
							| 18 | 2 | toptopon |  |-  ( K e. Top <-> K e. ( TopOn ` Y ) ) | 
						
							| 19 | 17 18 | sylib |  |-  ( ph -> K e. ( TopOn ` Y ) ) | 
						
							| 20 |  | cnconst2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ K e. ( TopOn ` Y ) /\ O e. Y ) -> ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) ) | 
						
							| 21 | 15 19 6 20 | syl3anc |  |-  ( ph -> ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) ) | 
						
							| 22 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 23 |  | fvconst2g |  |-  ( ( O e. Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) | 
						
							| 24 | 6 22 23 | sylancl |  |-  ( ph -> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) | 
						
							| 25 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 26 |  | fvconst2g |  |-  ( ( O e. Y /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) | 
						
							| 27 | 6 25 26 | sylancl |  |-  ( ph -> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) | 
						
							| 28 | 9 | sneqd |  |-  ( ph -> { ( F ` P ) } = { ( G ` O ) } ) | 
						
							| 29 | 28 | xpeq2d |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( F ` P ) } ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) | 
						
							| 30 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 31 |  | eqid |  |-  U. J = U. J | 
						
							| 32 | 1 31 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> U. J ) | 
						
							| 33 |  | ffn |  |-  ( F : B --> U. J -> F Fn B ) | 
						
							| 34 | 3 30 32 33 | 4syl |  |-  ( ph -> F Fn B ) | 
						
							| 35 |  | fcoconst |  |-  ( ( F Fn B /\ P e. B ) -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( ( 0 [,] 1 ) X. { ( F ` P ) } ) ) | 
						
							| 36 | 34 8 35 | syl2anc |  |-  ( ph -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( ( 0 [,] 1 ) X. { ( F ` P ) } ) ) | 
						
							| 37 | 2 31 | cnf |  |-  ( G e. ( K Cn J ) -> G : Y --> U. J ) | 
						
							| 38 | 7 37 | syl |  |-  ( ph -> G : Y --> U. J ) | 
						
							| 39 | 38 | ffnd |  |-  ( ph -> G Fn Y ) | 
						
							| 40 |  | fcoconst |  |-  ( ( G Fn Y /\ O e. Y ) -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) | 
						
							| 41 | 39 6 40 | syl2anc |  |-  ( ph -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) | 
						
							| 42 | 29 36 41 | 3eqtr4d |  |-  ( ph -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) | 
						
							| 43 |  | fvconst2g |  |-  ( ( P e. B /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) | 
						
							| 44 | 8 22 43 | sylancl |  |-  ( ph -> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) | 
						
							| 45 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 46 | 3 45 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 47 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 48 | 46 47 | sylib |  |-  ( ph -> C e. ( TopOn ` B ) ) | 
						
							| 49 |  | cnconst2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ C e. ( TopOn ` B ) /\ P e. B ) -> ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) ) | 
						
							| 50 | 15 48 8 49 | syl3anc |  |-  ( ph -> ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) ) | 
						
							| 51 |  | cvmtop2 |  |-  ( F e. ( C CovMap J ) -> J e. Top ) | 
						
							| 52 | 3 51 | syl |  |-  ( ph -> J e. Top ) | 
						
							| 53 | 31 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` U. J ) ) | 
						
							| 54 | 52 53 | sylib |  |-  ( ph -> J e. ( TopOn ` U. J ) ) | 
						
							| 55 | 38 6 | ffvelcdmd |  |-  ( ph -> ( G ` O ) e. U. J ) | 
						
							| 56 |  | cnconst2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` U. J ) /\ ( G ` O ) e. U. J ) -> ( ( 0 [,] 1 ) X. { ( G ` O ) } ) e. ( II Cn J ) ) | 
						
							| 57 | 15 54 55 56 | syl3anc |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( G ` O ) } ) e. ( II Cn J ) ) | 
						
							| 58 | 41 57 | eqeltrd |  |-  ( ph -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) e. ( II Cn J ) ) | 
						
							| 59 |  | fvconst2g |  |-  ( ( ( G ` O ) e. U. J /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) = ( G ` O ) ) | 
						
							| 60 | 55 22 59 | sylancl |  |-  ( ph -> ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) = ( G ` O ) ) | 
						
							| 61 | 41 | fveq1d |  |-  ( ph -> ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) = ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) ) | 
						
							| 62 | 60 61 9 | 3eqtr4rd |  |-  ( ph -> ( F ` P ) = ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) ) | 
						
							| 63 | 1 | cvmlift |  |-  ( ( ( F e. ( C CovMap J ) /\ ( G o. ( ( 0 [,] 1 ) X. { O } ) ) e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) | 
						
							| 64 | 3 58 8 62 63 | syl22anc |  |-  ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) | 
						
							| 65 |  | coeq2 |  |-  ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( F o. g ) = ( F o. ( ( 0 [,] 1 ) X. { P } ) ) ) | 
						
							| 66 | 65 | eqeq1d |  |-  ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) <-> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) ) | 
						
							| 67 |  | fveq1 |  |-  ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( g ` 0 ) = ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) ) | 
						
							| 68 | 67 | eqeq1d |  |-  ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( g ` 0 ) = P <-> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) ) | 
						
							| 69 | 66 68 | anbi12d |  |-  ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) <-> ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) ) ) | 
						
							| 70 | 69 | riota2 |  |-  ( ( ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) /\ E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) -> ( ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) ) | 
						
							| 71 | 50 64 70 | syl2anc |  |-  ( ph -> ( ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) ) | 
						
							| 72 | 42 44 71 | mpbi2and |  |-  ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) | 
						
							| 73 | 72 | fveq1d |  |-  ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) ) | 
						
							| 74 |  | fvconst2g |  |-  ( ( P e. B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) = P ) | 
						
							| 75 | 8 25 74 | sylancl |  |-  ( ph -> ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) = P ) | 
						
							| 76 | 73 75 | eqtrd |  |-  ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) | 
						
							| 77 |  | fveq1 |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( f ` 0 ) = ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) ) | 
						
							| 78 | 77 | eqeq1d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( f ` 0 ) = O <-> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) ) | 
						
							| 79 |  | fveq1 |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( f ` 1 ) = ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) ) | 
						
							| 80 | 79 | eqeq1d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( f ` 1 ) = O <-> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) ) | 
						
							| 81 |  | coeq2 |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( G o. f ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) | 
						
							| 82 | 81 | eqeq2d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) ) | 
						
							| 83 | 82 | anbi1d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 84 | 83 | riotabidv |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 85 | 84 | fveq1d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) | 
						
							| 86 | 85 | eqeq1d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) | 
						
							| 87 | 78 80 86 | 3anbi123d |  |-  ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) <-> ( ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O /\ ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) | 
						
							| 88 | 87 | rspcev |  |-  ( ( ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) /\ ( ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O /\ ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) | 
						
							| 89 | 21 24 27 76 88 | syl13anc |  |-  ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) | 
						
							| 90 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 |  |-  ( ( ph /\ O e. Y ) -> ( ( H ` O ) = P <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) | 
						
							| 91 | 6 90 | mpdan |  |-  ( ph -> ( ( H ` O ) = P <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) | 
						
							| 92 | 89 91 | mpbird |  |-  ( ph -> ( H ` O ) = P ) | 
						
							| 93 |  | coeq2 |  |-  ( f = H -> ( F o. f ) = ( F o. H ) ) | 
						
							| 94 | 93 | eqeq1d |  |-  ( f = H -> ( ( F o. f ) = G <-> ( F o. H ) = G ) ) | 
						
							| 95 |  | fveq1 |  |-  ( f = H -> ( f ` O ) = ( H ` O ) ) | 
						
							| 96 | 95 | eqeq1d |  |-  ( f = H -> ( ( f ` O ) = P <-> ( H ` O ) = P ) ) | 
						
							| 97 | 94 96 | anbi12d |  |-  ( f = H -> ( ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> ( ( F o. H ) = G /\ ( H ` O ) = P ) ) ) | 
						
							| 98 | 97 | rspcev |  |-  ( ( H e. ( K Cn C ) /\ ( ( F o. H ) = G /\ ( H ` O ) = P ) ) -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) | 
						
							| 99 | 12 13 92 98 | syl12anc |  |-  ( ph -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |