Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
|- B = U. C |
2 |
|
cvmlift3.y |
|- Y = U. K |
3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
10 |
|
cvmlift3.h |
|- H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
11 |
|
cvmlift3lem7.s |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
cvmlift3lem8 |
|- ( ph -> H e. ( K Cn C ) ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
|- ( ph -> ( F o. H ) = G ) |
14 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
15 |
14
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
16 |
|
sconntop |
|- ( K e. SConn -> K e. Top ) |
17 |
4 16
|
syl |
|- ( ph -> K e. Top ) |
18 |
2
|
toptopon |
|- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
19 |
17 18
|
sylib |
|- ( ph -> K e. ( TopOn ` Y ) ) |
20 |
|
cnconst2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ K e. ( TopOn ` Y ) /\ O e. Y ) -> ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) ) |
21 |
15 19 6 20
|
syl3anc |
|- ( ph -> ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) ) |
22 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
23 |
|
fvconst2g |
|- ( ( O e. Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) |
24 |
6 22 23
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) |
25 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
26 |
|
fvconst2g |
|- ( ( O e. Y /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) |
27 |
6 25 26
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) |
28 |
9
|
sneqd |
|- ( ph -> { ( F ` P ) } = { ( G ` O ) } ) |
29 |
28
|
xpeq2d |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( F ` P ) } ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) |
30 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
31 |
|
eqid |
|- U. J = U. J |
32 |
1 31
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> U. J ) |
33 |
|
ffn |
|- ( F : B --> U. J -> F Fn B ) |
34 |
3 30 32 33
|
4syl |
|- ( ph -> F Fn B ) |
35 |
|
fcoconst |
|- ( ( F Fn B /\ P e. B ) -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( ( 0 [,] 1 ) X. { ( F ` P ) } ) ) |
36 |
34 8 35
|
syl2anc |
|- ( ph -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( ( 0 [,] 1 ) X. { ( F ` P ) } ) ) |
37 |
2 31
|
cnf |
|- ( G e. ( K Cn J ) -> G : Y --> U. J ) |
38 |
7 37
|
syl |
|- ( ph -> G : Y --> U. J ) |
39 |
38
|
ffnd |
|- ( ph -> G Fn Y ) |
40 |
|
fcoconst |
|- ( ( G Fn Y /\ O e. Y ) -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) |
41 |
39 6 40
|
syl2anc |
|- ( ph -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) |
42 |
29 36 41
|
3eqtr4d |
|- ( ph -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) |
43 |
|
fvconst2g |
|- ( ( P e. B /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) |
44 |
8 22 43
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) |
45 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
46 |
3 45
|
syl |
|- ( ph -> C e. Top ) |
47 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
48 |
46 47
|
sylib |
|- ( ph -> C e. ( TopOn ` B ) ) |
49 |
|
cnconst2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ C e. ( TopOn ` B ) /\ P e. B ) -> ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) ) |
50 |
15 48 8 49
|
syl3anc |
|- ( ph -> ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) ) |
51 |
|
cvmtop2 |
|- ( F e. ( C CovMap J ) -> J e. Top ) |
52 |
3 51
|
syl |
|- ( ph -> J e. Top ) |
53 |
31
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
54 |
52 53
|
sylib |
|- ( ph -> J e. ( TopOn ` U. J ) ) |
55 |
38 6
|
ffvelrnd |
|- ( ph -> ( G ` O ) e. U. J ) |
56 |
|
cnconst2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` U. J ) /\ ( G ` O ) e. U. J ) -> ( ( 0 [,] 1 ) X. { ( G ` O ) } ) e. ( II Cn J ) ) |
57 |
15 54 55 56
|
syl3anc |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( G ` O ) } ) e. ( II Cn J ) ) |
58 |
41 57
|
eqeltrd |
|- ( ph -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) e. ( II Cn J ) ) |
59 |
|
fvconst2g |
|- ( ( ( G ` O ) e. U. J /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) = ( G ` O ) ) |
60 |
55 22 59
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) = ( G ` O ) ) |
61 |
41
|
fveq1d |
|- ( ph -> ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) = ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) ) |
62 |
60 61 9
|
3eqtr4rd |
|- ( ph -> ( F ` P ) = ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) ) |
63 |
1
|
cvmlift |
|- ( ( ( F e. ( C CovMap J ) /\ ( G o. ( ( 0 [,] 1 ) X. { O } ) ) e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) |
64 |
3 58 8 62 63
|
syl22anc |
|- ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) |
65 |
|
coeq2 |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( F o. g ) = ( F o. ( ( 0 [,] 1 ) X. { P } ) ) ) |
66 |
65
|
eqeq1d |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) <-> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) ) |
67 |
|
fveq1 |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( g ` 0 ) = ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) ) |
68 |
67
|
eqeq1d |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( g ` 0 ) = P <-> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) ) |
69 |
66 68
|
anbi12d |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) <-> ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) ) ) |
70 |
69
|
riota2 |
|- ( ( ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) /\ E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) -> ( ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) ) |
71 |
50 64 70
|
syl2anc |
|- ( ph -> ( ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) ) |
72 |
42 44 71
|
mpbi2and |
|- ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) |
73 |
72
|
fveq1d |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) ) |
74 |
|
fvconst2g |
|- ( ( P e. B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) = P ) |
75 |
8 25 74
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) = P ) |
76 |
73 75
|
eqtrd |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) |
77 |
|
fveq1 |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( f ` 0 ) = ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) ) |
78 |
77
|
eqeq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( f ` 0 ) = O <-> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) ) |
79 |
|
fveq1 |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( f ` 1 ) = ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) ) |
80 |
79
|
eqeq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( f ` 1 ) = O <-> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) ) |
81 |
|
coeq2 |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( G o. f ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) |
82 |
81
|
eqeq2d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) ) |
83 |
82
|
anbi1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ) |
84 |
83
|
riotabidv |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ) |
85 |
84
|
fveq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
86 |
85
|
eqeq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) |
87 |
78 80 86
|
3anbi123d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) <-> ( ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O /\ ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) |
88 |
87
|
rspcev |
|- ( ( ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) /\ ( ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O /\ ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) |
89 |
21 24 27 76 88
|
syl13anc |
|- ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) |
90 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
|- ( ( ph /\ O e. Y ) -> ( ( H ` O ) = P <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) |
91 |
6 90
|
mpdan |
|- ( ph -> ( ( H ` O ) = P <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) |
92 |
89 91
|
mpbird |
|- ( ph -> ( H ` O ) = P ) |
93 |
|
coeq2 |
|- ( f = H -> ( F o. f ) = ( F o. H ) ) |
94 |
93
|
eqeq1d |
|- ( f = H -> ( ( F o. f ) = G <-> ( F o. H ) = G ) ) |
95 |
|
fveq1 |
|- ( f = H -> ( f ` O ) = ( H ` O ) ) |
96 |
95
|
eqeq1d |
|- ( f = H -> ( ( f ` O ) = P <-> ( H ` O ) = P ) ) |
97 |
94 96
|
anbi12d |
|- ( f = H -> ( ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> ( ( F o. H ) = G /\ ( H ` O ) = P ) ) ) |
98 |
97
|
rspcev |
|- ( ( H e. ( K Cn C ) /\ ( ( F o. H ) = G /\ ( H ` O ) = P ) ) -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |
99 |
12 13 92 98
|
syl12anc |
|- ( ph -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |