| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift3.b |
|- B = U. C |
| 2 |
|
cvmlift3.y |
|- Y = U. K |
| 3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
| 5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
| 6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
| 7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
| 8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
| 9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
| 10 |
|
cvmlift3.h |
|- H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
| 11 |
|
cvmlift3lem7.s |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. c e. s ( A. d e. ( s \ { c } ) ( c i^i d ) = (/) /\ ( F |` c ) e. ( ( C |`t c ) Homeo ( J |`t k ) ) ) ) } ) |
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
cvmlift3lem8 |
|- ( ph -> H e. ( K Cn C ) ) |
| 13 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem5 |
|- ( ph -> ( F o. H ) = G ) |
| 14 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 15 |
14
|
a1i |
|- ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 16 |
|
sconntop |
|- ( K e. SConn -> K e. Top ) |
| 17 |
4 16
|
syl |
|- ( ph -> K e. Top ) |
| 18 |
2
|
toptopon |
|- ( K e. Top <-> K e. ( TopOn ` Y ) ) |
| 19 |
17 18
|
sylib |
|- ( ph -> K e. ( TopOn ` Y ) ) |
| 20 |
|
cnconst2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ K e. ( TopOn ` Y ) /\ O e. Y ) -> ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) ) |
| 21 |
15 19 6 20
|
syl3anc |
|- ( ph -> ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) ) |
| 22 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 23 |
|
fvconst2g |
|- ( ( O e. Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) |
| 24 |
6 22 23
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) |
| 25 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
| 26 |
|
fvconst2g |
|- ( ( O e. Y /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) |
| 27 |
6 25 26
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) |
| 28 |
9
|
sneqd |
|- ( ph -> { ( F ` P ) } = { ( G ` O ) } ) |
| 29 |
28
|
xpeq2d |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( F ` P ) } ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) |
| 30 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
| 31 |
|
eqid |
|- U. J = U. J |
| 32 |
1 31
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> U. J ) |
| 33 |
|
ffn |
|- ( F : B --> U. J -> F Fn B ) |
| 34 |
3 30 32 33
|
4syl |
|- ( ph -> F Fn B ) |
| 35 |
|
fcoconst |
|- ( ( F Fn B /\ P e. B ) -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( ( 0 [,] 1 ) X. { ( F ` P ) } ) ) |
| 36 |
34 8 35
|
syl2anc |
|- ( ph -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( ( 0 [,] 1 ) X. { ( F ` P ) } ) ) |
| 37 |
2 31
|
cnf |
|- ( G e. ( K Cn J ) -> G : Y --> U. J ) |
| 38 |
7 37
|
syl |
|- ( ph -> G : Y --> U. J ) |
| 39 |
38
|
ffnd |
|- ( ph -> G Fn Y ) |
| 40 |
|
fcoconst |
|- ( ( G Fn Y /\ O e. Y ) -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) |
| 41 |
39 6 40
|
syl2anc |
|- ( ph -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) = ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ) |
| 42 |
29 36 41
|
3eqtr4d |
|- ( ph -> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) |
| 43 |
|
fvconst2g |
|- ( ( P e. B /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) |
| 44 |
8 22 43
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) |
| 45 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
| 46 |
3 45
|
syl |
|- ( ph -> C e. Top ) |
| 47 |
1
|
toptopon |
|- ( C e. Top <-> C e. ( TopOn ` B ) ) |
| 48 |
46 47
|
sylib |
|- ( ph -> C e. ( TopOn ` B ) ) |
| 49 |
|
cnconst2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ C e. ( TopOn ` B ) /\ P e. B ) -> ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) ) |
| 50 |
15 48 8 49
|
syl3anc |
|- ( ph -> ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) ) |
| 51 |
|
cvmtop2 |
|- ( F e. ( C CovMap J ) -> J e. Top ) |
| 52 |
3 51
|
syl |
|- ( ph -> J e. Top ) |
| 53 |
31
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` U. J ) ) |
| 54 |
52 53
|
sylib |
|- ( ph -> J e. ( TopOn ` U. J ) ) |
| 55 |
38 6
|
ffvelcdmd |
|- ( ph -> ( G ` O ) e. U. J ) |
| 56 |
|
cnconst2 |
|- ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ J e. ( TopOn ` U. J ) /\ ( G ` O ) e. U. J ) -> ( ( 0 [,] 1 ) X. { ( G ` O ) } ) e. ( II Cn J ) ) |
| 57 |
15 54 55 56
|
syl3anc |
|- ( ph -> ( ( 0 [,] 1 ) X. { ( G ` O ) } ) e. ( II Cn J ) ) |
| 58 |
41 57
|
eqeltrd |
|- ( ph -> ( G o. ( ( 0 [,] 1 ) X. { O } ) ) e. ( II Cn J ) ) |
| 59 |
|
fvconst2g |
|- ( ( ( G ` O ) e. U. J /\ 0 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) = ( G ` O ) ) |
| 60 |
55 22 59
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) = ( G ` O ) ) |
| 61 |
41
|
fveq1d |
|- ( ph -> ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) = ( ( ( 0 [,] 1 ) X. { ( G ` O ) } ) ` 0 ) ) |
| 62 |
60 61 9
|
3eqtr4rd |
|- ( ph -> ( F ` P ) = ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) ) |
| 63 |
1
|
cvmlift |
|- ( ( ( F e. ( C CovMap J ) /\ ( G o. ( ( 0 [,] 1 ) X. { O } ) ) e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ` 0 ) ) ) -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) |
| 64 |
3 58 8 62 63
|
syl22anc |
|- ( ph -> E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) |
| 65 |
|
coeq2 |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( F o. g ) = ( F o. ( ( 0 [,] 1 ) X. { P } ) ) ) |
| 66 |
65
|
eqeq1d |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) <-> ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) ) |
| 67 |
|
fveq1 |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( g ` 0 ) = ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) ) |
| 68 |
67
|
eqeq1d |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( g ` 0 ) = P <-> ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) ) |
| 69 |
66 68
|
anbi12d |
|- ( g = ( ( 0 [,] 1 ) X. { P } ) -> ( ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) <-> ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) ) ) |
| 70 |
69
|
riota2 |
|- ( ( ( ( 0 [,] 1 ) X. { P } ) e. ( II Cn C ) /\ E! g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) -> ( ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) ) |
| 71 |
50 64 70
|
syl2anc |
|- ( ph -> ( ( ( F o. ( ( 0 [,] 1 ) X. { P } ) ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( ( ( 0 [,] 1 ) X. { P } ) ` 0 ) = P ) <-> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) ) |
| 72 |
42 44 71
|
mpbi2and |
|- ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) = ( ( 0 [,] 1 ) X. { P } ) ) |
| 73 |
72
|
fveq1d |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) ) |
| 74 |
|
fvconst2g |
|- ( ( P e. B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) = P ) |
| 75 |
8 25 74
|
sylancl |
|- ( ph -> ( ( ( 0 [,] 1 ) X. { P } ) ` 1 ) = P ) |
| 76 |
73 75
|
eqtrd |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) |
| 77 |
|
fveq1 |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( f ` 0 ) = ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) ) |
| 78 |
77
|
eqeq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( f ` 0 ) = O <-> ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O ) ) |
| 79 |
|
fveq1 |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( f ` 1 ) = ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) ) |
| 80 |
79
|
eqeq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( f ` 1 ) = O <-> ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O ) ) |
| 81 |
|
coeq2 |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( G o. f ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) |
| 82 |
81
|
eqeq2d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) ) ) |
| 83 |
82
|
anbi1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ) |
| 84 |
83
|
riotabidv |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ) |
| 85 |
84
|
fveq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
| 86 |
85
|
eqeq1d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) |
| 87 |
78 80 86
|
3anbi123d |
|- ( f = ( ( 0 [,] 1 ) X. { O } ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) <-> ( ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O /\ ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) |
| 88 |
87
|
rspcev |
|- ( ( ( ( 0 [,] 1 ) X. { O } ) e. ( II Cn K ) /\ ( ( ( ( 0 [,] 1 ) X. { O } ) ` 0 ) = O /\ ( ( ( 0 [,] 1 ) X. { O } ) ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. ( ( 0 [,] 1 ) X. { O } ) ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) |
| 89 |
21 24 27 76 88
|
syl13anc |
|- ( ph -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) |
| 90 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
|- ( ( ph /\ O e. Y ) -> ( ( H ` O ) = P <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) |
| 91 |
6 90
|
mpdan |
|- ( ph -> ( ( H ` O ) = P <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = O /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = P ) ) ) |
| 92 |
89 91
|
mpbird |
|- ( ph -> ( H ` O ) = P ) |
| 93 |
|
coeq2 |
|- ( f = H -> ( F o. f ) = ( F o. H ) ) |
| 94 |
93
|
eqeq1d |
|- ( f = H -> ( ( F o. f ) = G <-> ( F o. H ) = G ) ) |
| 95 |
|
fveq1 |
|- ( f = H -> ( f ` O ) = ( H ` O ) ) |
| 96 |
95
|
eqeq1d |
|- ( f = H -> ( ( f ` O ) = P <-> ( H ` O ) = P ) ) |
| 97 |
94 96
|
anbi12d |
|- ( f = H -> ( ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> ( ( F o. H ) = G /\ ( H ` O ) = P ) ) ) |
| 98 |
97
|
rspcev |
|- ( ( H e. ( K Cn C ) /\ ( ( F o. H ) = G /\ ( H ` O ) = P ) ) -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |
| 99 |
12 13 92 98
|
syl12anc |
|- ( ph -> E. f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |