Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
|- B = U. C |
2 |
|
cvmlift3.y |
|- Y = U. K |
3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
10 |
|
cvmlift3.h |
|- H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
11 |
|
eqid |
|- ( H ` y ) = ( H ` y ) |
12 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem4 |
|- ( ( ph /\ y e. Y ) -> ( ( H ` y ) = ( H ` y ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) ) ) |
13 |
11 12
|
mpbii |
|- ( ( ph /\ y e. Y ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) ) |
14 |
|
df-3an |
|- ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) <-> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) ) |
15 |
|
eqid |
|- ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) |
16 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> F e. ( C CovMap J ) ) |
17 |
|
simplr |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> f e. ( II Cn K ) ) |
18 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> G e. ( K Cn J ) ) |
19 |
|
cnco |
|- ( ( f e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. f ) e. ( II Cn J ) ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( G o. f ) e. ( II Cn J ) ) |
21 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> P e. B ) |
22 |
|
simprl |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( f ` 0 ) = O ) |
23 |
22
|
fveq2d |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( G ` ( f ` 0 ) ) = ( G ` O ) ) |
24 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
25 |
24 2
|
cnf |
|- ( f e. ( II Cn K ) -> f : ( 0 [,] 1 ) --> Y ) |
26 |
17 25
|
syl |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> f : ( 0 [,] 1 ) --> Y ) |
27 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
28 |
|
fvco3 |
|- ( ( f : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) |
29 |
26 27 28
|
sylancl |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) |
30 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F ` P ) = ( G ` O ) ) |
31 |
23 29 30
|
3eqtr4rd |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F ` P ) = ( ( G o. f ) ` 0 ) ) |
32 |
1 15 16 20 21 31
|
cvmliftiota |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) /\ ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) = ( G o. f ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 0 ) = P ) ) |
33 |
32
|
simp2d |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) = ( G o. f ) ) |
34 |
33
|
fveq1d |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) ` 1 ) = ( ( G o. f ) ` 1 ) ) |
35 |
32
|
simp1d |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) ) |
36 |
24 1
|
cnf |
|- ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) |
37 |
35 36
|
syl |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) |
38 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
39 |
|
fvco3 |
|- ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) ` 1 ) = ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
40 |
37 38 39
|
sylancl |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) ` 1 ) = ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
41 |
|
fvco3 |
|- ( ( f : ( 0 [,] 1 ) --> Y /\ 1 e. ( 0 [,] 1 ) ) -> ( ( G o. f ) ` 1 ) = ( G ` ( f ` 1 ) ) ) |
42 |
26 38 41
|
sylancl |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( G o. f ) ` 1 ) = ( G ` ( f ` 1 ) ) ) |
43 |
|
simprr |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( f ` 1 ) = y ) |
44 |
43
|
fveq2d |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( G ` ( f ` 1 ) ) = ( G ` y ) ) |
45 |
42 44
|
eqtrd |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( G o. f ) ` 1 ) = ( G ` y ) ) |
46 |
34 40 45
|
3eqtr3d |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) = ( G ` y ) ) |
47 |
|
fveqeq2 |
|- ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) -> ( ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) = ( G ` y ) <-> ( F ` ( H ` y ) ) = ( G ` y ) ) ) |
48 |
46 47
|
syl5ibcom |
|- ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) |
49 |
48
|
expimpd |
|- ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) -> ( ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) |
50 |
14 49
|
syl5bi |
|- ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) |
51 |
50
|
rexlimdva |
|- ( ( ph /\ y e. Y ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) |
52 |
13 51
|
mpd |
|- ( ( ph /\ y e. Y ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) |
53 |
52
|
mpteq2dva |
|- ( ph -> ( y e. Y |-> ( F ` ( H ` y ) ) ) = ( y e. Y |-> ( G ` y ) ) ) |
54 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
|- ( ph -> H : Y --> B ) |
55 |
54
|
ffvelrnda |
|- ( ( ph /\ y e. Y ) -> ( H ` y ) e. B ) |
56 |
54
|
feqmptd |
|- ( ph -> H = ( y e. Y |-> ( H ` y ) ) ) |
57 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
58 |
|
eqid |
|- U. J = U. J |
59 |
1 58
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> U. J ) |
60 |
3 57 59
|
3syl |
|- ( ph -> F : B --> U. J ) |
61 |
60
|
feqmptd |
|- ( ph -> F = ( w e. B |-> ( F ` w ) ) ) |
62 |
|
fveq2 |
|- ( w = ( H ` y ) -> ( F ` w ) = ( F ` ( H ` y ) ) ) |
63 |
55 56 61 62
|
fmptco |
|- ( ph -> ( F o. H ) = ( y e. Y |-> ( F ` ( H ` y ) ) ) ) |
64 |
2 58
|
cnf |
|- ( G e. ( K Cn J ) -> G : Y --> U. J ) |
65 |
7 64
|
syl |
|- ( ph -> G : Y --> U. J ) |
66 |
65
|
feqmptd |
|- ( ph -> G = ( y e. Y |-> ( G ` y ) ) ) |
67 |
53 63 66
|
3eqtr4d |
|- ( ph -> ( F o. H ) = G ) |