| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | cvmlift3.h |  |-  H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 11 |  | eqid |  |-  ( H ` y ) = ( H ` y ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 |  |-  ( ( ph /\ y e. Y ) -> ( ( H ` y ) = ( H ` y ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) ) ) | 
						
							| 13 | 11 12 | mpbii |  |-  ( ( ph /\ y e. Y ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) ) | 
						
							| 14 |  | df-3an |  |-  ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) <-> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) ) | 
						
							| 15 |  | eqid |  |-  ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) | 
						
							| 16 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> F e. ( C CovMap J ) ) | 
						
							| 17 |  | simplr |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> f e. ( II Cn K ) ) | 
						
							| 18 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> G e. ( K Cn J ) ) | 
						
							| 19 |  | cnco |  |-  ( ( f e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. f ) e. ( II Cn J ) ) | 
						
							| 20 | 17 18 19 | syl2anc |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( G o. f ) e. ( II Cn J ) ) | 
						
							| 21 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> P e. B ) | 
						
							| 22 |  | simprl |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( f ` 0 ) = O ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( G ` ( f ` 0 ) ) = ( G ` O ) ) | 
						
							| 24 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 25 | 24 2 | cnf |  |-  ( f e. ( II Cn K ) -> f : ( 0 [,] 1 ) --> Y ) | 
						
							| 26 | 17 25 | syl |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> f : ( 0 [,] 1 ) --> Y ) | 
						
							| 27 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 28 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) | 
						
							| 30 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F ` P ) = ( G ` O ) ) | 
						
							| 31 | 23 29 30 | 3eqtr4rd |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F ` P ) = ( ( G o. f ) ` 0 ) ) | 
						
							| 32 | 1 15 16 20 21 31 | cvmliftiota |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) /\ ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) = ( G o. f ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 0 ) = P ) ) | 
						
							| 33 | 32 | simp2d |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) = ( G o. f ) ) | 
						
							| 34 | 33 | fveq1d |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) ` 1 ) = ( ( G o. f ) ` 1 ) ) | 
						
							| 35 | 32 | simp1d |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) ) | 
						
							| 36 | 24 1 | cnf |  |-  ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 37 | 35 36 | syl |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 38 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 39 |  | fvco3 |  |-  ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) ` 1 ) = ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) | 
						
							| 40 | 37 38 39 | sylancl |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) ` 1 ) = ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) | 
						
							| 41 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> Y /\ 1 e. ( 0 [,] 1 ) ) -> ( ( G o. f ) ` 1 ) = ( G ` ( f ` 1 ) ) ) | 
						
							| 42 | 26 38 41 | sylancl |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( G o. f ) ` 1 ) = ( G ` ( f ` 1 ) ) ) | 
						
							| 43 |  | simprr |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( f ` 1 ) = y ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( G ` ( f ` 1 ) ) = ( G ` y ) ) | 
						
							| 45 | 42 44 | eqtrd |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( G o. f ) ` 1 ) = ( G ` y ) ) | 
						
							| 46 | 34 40 45 | 3eqtr3d |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) = ( G ` y ) ) | 
						
							| 47 |  | fveqeq2 |  |-  ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) -> ( ( F ` ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) = ( G ` y ) <-> ( F ` ( H ` y ) ) = ( G ` y ) ) ) | 
						
							| 48 | 46 47 | syl5ibcom |  |-  ( ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) /\ ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) | 
						
							| 49 | 48 | expimpd |  |-  ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) -> ( ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) | 
						
							| 50 | 14 49 | biimtrid |  |-  ( ( ( ph /\ y e. Y ) /\ f e. ( II Cn K ) ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) | 
						
							| 51 | 50 | rexlimdva |  |-  ( ( ph /\ y e. Y ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = y /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( H ` y ) ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) ) | 
						
							| 52 | 13 51 | mpd |  |-  ( ( ph /\ y e. Y ) -> ( F ` ( H ` y ) ) = ( G ` y ) ) | 
						
							| 53 | 52 | mpteq2dva |  |-  ( ph -> ( y e. Y |-> ( F ` ( H ` y ) ) ) = ( y e. Y |-> ( G ` y ) ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 |  |-  ( ph -> H : Y --> B ) | 
						
							| 55 | 54 | ffvelcdmda |  |-  ( ( ph /\ y e. Y ) -> ( H ` y ) e. B ) | 
						
							| 56 | 54 | feqmptd |  |-  ( ph -> H = ( y e. Y |-> ( H ` y ) ) ) | 
						
							| 57 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 58 |  | eqid |  |-  U. J = U. J | 
						
							| 59 | 1 58 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> U. J ) | 
						
							| 60 | 3 57 59 | 3syl |  |-  ( ph -> F : B --> U. J ) | 
						
							| 61 | 60 | feqmptd |  |-  ( ph -> F = ( w e. B |-> ( F ` w ) ) ) | 
						
							| 62 |  | fveq2 |  |-  ( w = ( H ` y ) -> ( F ` w ) = ( F ` ( H ` y ) ) ) | 
						
							| 63 | 55 56 61 62 | fmptco |  |-  ( ph -> ( F o. H ) = ( y e. Y |-> ( F ` ( H ` y ) ) ) ) | 
						
							| 64 | 2 58 | cnf |  |-  ( G e. ( K Cn J ) -> G : Y --> U. J ) | 
						
							| 65 | 7 64 | syl |  |-  ( ph -> G : Y --> U. J ) | 
						
							| 66 | 65 | feqmptd |  |-  ( ph -> G = ( y e. Y |-> ( G ` y ) ) ) | 
						
							| 67 | 53 63 66 | 3eqtr4d |  |-  ( ph -> ( F o. H ) = G ) |