| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift3.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmlift3.k | ⊢ ( 𝜑  →  𝐾  ∈  SConn ) | 
						
							| 5 |  | cvmlift3.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 6 |  | cvmlift3.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmlift3.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmlift3.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmlift3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 |  | cvmlift3.h | ⊢ 𝐻  =  ( 𝑥  ∈  𝑌  ↦  ( ℩ 𝑧  ∈  𝐵 ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑥  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  𝑧 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ 𝑦 ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem4 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ 𝑦 )  ↔  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) ) ) ) | 
						
							| 13 | 11 12 | mpbii | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) ) ) | 
						
							| 14 |  | df-3an | ⊢ ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) )  ↔  ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 16 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  𝑓  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 18 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 19 |  | cnco | ⊢ ( ( 𝑓  ∈  ( II  Cn  𝐾 )  ∧  𝐺  ∈  ( 𝐾  Cn  𝐽 ) )  →  ( 𝐺  ∘  𝑓 )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐺  ∘  𝑓 )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 21 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 22 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝑓 ‘ 0 )  =  𝑂 ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐺 ‘ ( 𝑓 ‘ 0 ) )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 24 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 25 | 24 2 | cnf | ⊢ ( 𝑓  ∈  ( II  Cn  𝐾 )  →  𝑓 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 26 | 17 25 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  𝑓 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 27 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 28 |  | fvco3 | ⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑌  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐺  ∘  𝑓 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 29 | 26 27 28 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( 𝐺  ∘  𝑓 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑓 ‘ 0 ) ) ) | 
						
							| 30 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 31 | 23 29 30 | 3eqtr4rd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  𝑓 ) ‘ 0 ) ) | 
						
							| 32 | 1 15 16 20 21 31 | cvmliftiota | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) )  =  ( 𝐺  ∘  𝑓 )  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 0 )  =  𝑃 ) ) | 
						
							| 33 | 32 | simp2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐹  ∘  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) )  =  ( 𝐺  ∘  𝑓 ) ) | 
						
							| 34 | 33 | fveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( 𝐹  ∘  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) ‘ 1 )  =  ( ( 𝐺  ∘  𝑓 ) ‘ 1 ) ) | 
						
							| 35 | 32 | simp1d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 36 | 24 1 | cnf | ⊢ ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  ∈  ( II  Cn  𝐶 )  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 38 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 39 |  | fvco3 | ⊢ ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) : ( 0 [,] 1 ) ⟶ 𝐵  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) ‘ 1 )  =  ( 𝐹 ‘ ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) ) | 
						
							| 40 | 37 38 39 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( 𝐹  ∘  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) ‘ 1 )  =  ( 𝐹 ‘ ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) ) | 
						
							| 41 |  | fvco3 | ⊢ ( ( 𝑓 : ( 0 [,] 1 ) ⟶ 𝑌  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐺  ∘  𝑓 ) ‘ 1 )  =  ( 𝐺 ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 42 | 26 38 41 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( 𝐺  ∘  𝑓 ) ‘ 1 )  =  ( 𝐺 ‘ ( 𝑓 ‘ 1 ) ) ) | 
						
							| 43 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝑓 ‘ 1 )  =  𝑦 ) | 
						
							| 44 | 43 | fveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐺 ‘ ( 𝑓 ‘ 1 ) )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 45 | 42 44 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( 𝐺  ∘  𝑓 ) ‘ 1 )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 46 | 34 40 45 | 3eqtr3d | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( 𝐹 ‘ ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 47 |  | fveqeq2 | ⊢ ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 )  →  ( ( 𝐹 ‘ ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) )  =  ( 𝐺 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 48 | 46 47 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  ∧  ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 ) )  →  ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 )  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 49 | 48 | expimpd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  →  ( ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦 )  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) )  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 50 | 14 49 | biimtrid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  ∧  𝑓  ∈  ( II  Cn  𝐾 ) )  →  ( ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) )  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 51 | 50 | rexlimdva | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( ∃ 𝑓  ∈  ( II  Cn  𝐾 ) ( ( 𝑓 ‘ 0 )  =  𝑂  ∧  ( 𝑓 ‘ 1 )  =  𝑦  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑓 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( 𝐻 ‘ 𝑦 ) )  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 52 | 13 51 | mpd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) )  =  ( 𝐺 ‘ 𝑦 ) ) | 
						
							| 53 | 52 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑦  ∈  𝑌  ↦  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) ) )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 | ⊢ ( 𝜑  →  𝐻 : 𝑌 ⟶ 𝐵 ) | 
						
							| 55 | 54 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑌 )  →  ( 𝐻 ‘ 𝑦 )  ∈  𝐵 ) | 
						
							| 56 | 54 | feqmptd | ⊢ ( 𝜑  →  𝐻  =  ( 𝑦  ∈  𝑌  ↦  ( 𝐻 ‘ 𝑦 ) ) ) | 
						
							| 57 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 58 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 59 | 1 58 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 60 | 3 57 59 | 3syl | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 61 | 60 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑤  ∈  𝐵  ↦  ( 𝐹 ‘ 𝑤 ) ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐻 ‘ 𝑦 )  →  ( 𝐹 ‘ 𝑤 )  =  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) ) ) | 
						
							| 63 | 55 56 61 62 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  =  ( 𝑦  ∈  𝑌  ↦  ( 𝐹 ‘ ( 𝐻 ‘ 𝑦 ) ) ) ) | 
						
							| 64 | 2 58 | cnf | ⊢ ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 65 | 7 64 | syl | ⊢ ( 𝜑  →  𝐺 : 𝑌 ⟶ ∪  𝐽 ) | 
						
							| 66 | 65 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑦  ∈  𝑌  ↦  ( 𝐺 ‘ 𝑦 ) ) ) | 
						
							| 67 | 53 63 66 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐻 )  =  𝐺 ) |