Metamath Proof Explorer


Theorem cvmlift3lem3

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmlift3.k ( 𝜑𝐾 ∈ SConn )
cvmlift3.l ( 𝜑𝐾 ∈ 𝑛-Locally PConn )
cvmlift3.o ( 𝜑𝑂𝑌 )
cvmlift3.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
cvmlift3.p ( 𝜑𝑃𝐵 )
cvmlift3.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
cvmlift3.h 𝐻 = ( 𝑥𝑌 ↦ ( 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) )
Assertion cvmlift3lem3 ( 𝜑𝐻 : 𝑌𝐵 )

Proof

Step Hyp Ref Expression
1 cvmlift3.b 𝐵 = 𝐶
2 cvmlift3.y 𝑌 = 𝐾
3 cvmlift3.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
4 cvmlift3.k ( 𝜑𝐾 ∈ SConn )
5 cvmlift3.l ( 𝜑𝐾 ∈ 𝑛-Locally PConn )
6 cvmlift3.o ( 𝜑𝑂𝑌 )
7 cvmlift3.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
8 cvmlift3.p ( 𝜑𝑃𝐵 )
9 cvmlift3.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
10 cvmlift3.h 𝐻 = ( 𝑥𝑌 ↦ ( 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) )
11 1 2 3 4 5 6 7 8 9 cvmlift3lem2 ( ( 𝜑𝑥𝑌 ) → ∃! 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) )
12 riotacl ( ∃! 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) → ( 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) ∈ 𝐵 )
13 11 12 syl ( ( 𝜑𝑥𝑌 ) → ( 𝑧𝐵𝑓 ∈ ( II Cn 𝐾 ) ( ( 𝑓 ‘ 0 ) = 𝑂 ∧ ( 𝑓 ‘ 1 ) = 𝑥 ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑓 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = 𝑧 ) ) ∈ 𝐵 )
14 13 10 fmptd ( 𝜑𝐻 : 𝑌𝐵 )