Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Mario Carneiro
Covering maps
cvmlift3lem3
Next ⟩
cvmlift3lem4
Metamath Proof Explorer
Ascii
Unicode
Theorem
cvmlift3lem3
Description:
Lemma for
cvmlift2
.
(Contributed by
Mario Carneiro
, 6-Jul-2015)
Ref
Expression
Hypotheses
cvmlift3.b
⊢
B
=
⋃
C
cvmlift3.y
⊢
Y
=
⋃
K
cvmlift3.f
⊢
φ
→
F
∈
C
CovMap
J
cvmlift3.k
⊢
φ
→
K
∈
SConn
cvmlift3.l
⊢
φ
→
K
∈
N-Locally
PConn
cvmlift3.o
⊢
φ
→
O
∈
Y
cvmlift3.g
⊢
φ
→
G
∈
K
Cn
J
cvmlift3.p
⊢
φ
→
P
∈
B
cvmlift3.e
⊢
φ
→
F
⁡
P
=
G
⁡
O
cvmlift3.h
⊢
H
=
x
∈
Y
⟼
ι
z
∈
B
|
∃
f
∈
II
Cn
K
f
⁡
0
=
O
∧
f
⁡
1
=
x
∧
ι
g
∈
II
Cn
C
|
F
∘
g
=
G
∘
f
∧
g
⁡
0
=
P
⁡
1
=
z
Assertion
cvmlift3lem3
⊢
φ
→
H
:
Y
⟶
B
Proof
Step
Hyp
Ref
Expression
1
cvmlift3.b
⊢
B
=
⋃
C
2
cvmlift3.y
⊢
Y
=
⋃
K
3
cvmlift3.f
⊢
φ
→
F
∈
C
CovMap
J
4
cvmlift3.k
⊢
φ
→
K
∈
SConn
5
cvmlift3.l
⊢
φ
→
K
∈
N-Locally
PConn
6
cvmlift3.o
⊢
φ
→
O
∈
Y
7
cvmlift3.g
⊢
φ
→
G
∈
K
Cn
J
8
cvmlift3.p
⊢
φ
→
P
∈
B
9
cvmlift3.e
⊢
φ
→
F
⁡
P
=
G
⁡
O
10
cvmlift3.h
⊢
H
=
x
∈
Y
⟼
ι
z
∈
B
|
∃
f
∈
II
Cn
K
f
⁡
0
=
O
∧
f
⁡
1
=
x
∧
ι
g
∈
II
Cn
C
|
F
∘
g
=
G
∘
f
∧
g
⁡
0
=
P
⁡
1
=
z
11
1
2
3
4
5
6
7
8
9
cvmlift3lem2
⊢
φ
∧
x
∈
Y
→
∃!
z
∈
B
∃
f
∈
II
Cn
K
f
⁡
0
=
O
∧
f
⁡
1
=
x
∧
ι
g
∈
II
Cn
C
|
F
∘
g
=
G
∘
f
∧
g
⁡
0
=
P
⁡
1
=
z
12
riotacl
⊢
∃!
z
∈
B
∃
f
∈
II
Cn
K
f
⁡
0
=
O
∧
f
⁡
1
=
x
∧
ι
g
∈
II
Cn
C
|
F
∘
g
=
G
∘
f
∧
g
⁡
0
=
P
⁡
1
=
z
→
ι
z
∈
B
|
∃
f
∈
II
Cn
K
f
⁡
0
=
O
∧
f
⁡
1
=
x
∧
ι
g
∈
II
Cn
C
|
F
∘
g
=
G
∘
f
∧
g
⁡
0
=
P
⁡
1
=
z
∈
B
13
11
12
syl
⊢
φ
∧
x
∈
Y
→
ι
z
∈
B
|
∃
f
∈
II
Cn
K
f
⁡
0
=
O
∧
f
⁡
1
=
x
∧
ι
g
∈
II
Cn
C
|
F
∘
g
=
G
∘
f
∧
g
⁡
0
=
P
⁡
1
=
z
∈
B
14
13
10
fmptd
⊢
φ
→
H
:
Y
⟶
B