Metamath Proof Explorer


Theorem cvmlift3lem3

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B = C
cvmlift3.y Y = K
cvmlift3.f φ F C CovMap J
cvmlift3.k φ K SConn
cvmlift3.l φ K N-Locally PConn
cvmlift3.o φ O Y
cvmlift3.g φ G K Cn J
cvmlift3.p φ P B
cvmlift3.e φ F P = G O
cvmlift3.h H = x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
Assertion cvmlift3lem3 φ H : Y B

Proof

Step Hyp Ref Expression
1 cvmlift3.b B = C
2 cvmlift3.y Y = K
3 cvmlift3.f φ F C CovMap J
4 cvmlift3.k φ K SConn
5 cvmlift3.l φ K N-Locally PConn
6 cvmlift3.o φ O Y
7 cvmlift3.g φ G K Cn J
8 cvmlift3.p φ P B
9 cvmlift3.e φ F P = G O
10 cvmlift3.h H = x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
11 1 2 3 4 5 6 7 8 9 cvmlift3lem2 φ x Y ∃! z B f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
12 riotacl ∃! z B f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z B
13 11 12 syl φ x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z B
14 13 10 fmptd φ H : Y B