Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
|
2 |
|
cvmlift3.y |
|
3 |
|
cvmlift3.f |
|
4 |
|
cvmlift3.k |
|
5 |
|
cvmlift3.l |
|
6 |
|
cvmlift3.o |
|
7 |
|
cvmlift3.g |
|
8 |
|
cvmlift3.p |
|
9 |
|
cvmlift3.e |
|
10 |
4
|
adantr |
|
11 |
|
sconnpconn |
|
12 |
10 11
|
syl |
|
13 |
6
|
adantr |
|
14 |
|
simpr |
|
15 |
2
|
pconncn |
|
16 |
12 13 14 15
|
syl3anc |
|
17 |
|
eqid |
|
18 |
3
|
ad2antrr |
|
19 |
|
simprl |
|
20 |
7
|
ad2antrr |
|
21 |
|
cnco |
|
22 |
19 20 21
|
syl2anc |
|
23 |
8
|
ad2antrr |
|
24 |
|
simprrl |
|
25 |
24
|
fveq2d |
|
26 |
|
iiuni |
|
27 |
26 2
|
cnf |
|
28 |
19 27
|
syl |
|
29 |
|
0elunit |
|
30 |
|
fvco3 |
|
31 |
28 29 30
|
sylancl |
|
32 |
9
|
ad2antrr |
|
33 |
25 31 32
|
3eqtr4rd |
|
34 |
1 17 18 22 23 33
|
cvmliftiota |
|
35 |
34
|
simp1d |
|
36 |
26 1
|
cnf |
|
37 |
35 36
|
syl |
|
38 |
|
1elunit |
|
39 |
|
ffvelrn |
|
40 |
37 38 39
|
sylancl |
|
41 |
|
simprrr |
|
42 |
|
eqidd |
|
43 |
|
fveq1 |
|
44 |
43
|
eqeq1d |
|
45 |
|
fveq1 |
|
46 |
45
|
eqeq1d |
|
47 |
|
coeq2 |
|
48 |
47
|
eqeq2d |
|
49 |
48
|
anbi1d |
|
50 |
49
|
riotabidv |
|
51 |
50
|
fveq1d |
|
52 |
51
|
eqeq1d |
|
53 |
44 46 52
|
3anbi123d |
|
54 |
53
|
rspcev |
|
55 |
19 24 41 42 54
|
syl13anc |
|
56 |
3
|
ad4antr |
|
57 |
4
|
ad4antr |
|
58 |
5
|
ad4antr |
|
59 |
6
|
ad4antr |
|
60 |
7
|
ad4antr |
|
61 |
8
|
ad4antr |
|
62 |
9
|
ad4antr |
|
63 |
19
|
ad2antrr |
|
64 |
24
|
ad2antrr |
|
65 |
|
simprl |
|
66 |
|
simprr1 |
|
67 |
41
|
ad2antrr |
|
68 |
|
simprr2 |
|
69 |
67 68
|
eqtr4d |
|
70 |
1 2 56 57 58 59 60 61 62 63 64 65 66 69
|
cvmlift3lem1 |
|
71 |
|
simprr3 |
|
72 |
70 71
|
eqtrd |
|
73 |
72
|
rexlimdvaa |
|
74 |
73
|
ralrimiva |
|
75 |
|
eqeq2 |
|
76 |
75
|
3anbi3d |
|
77 |
76
|
rexbidv |
|
78 |
|
eqeq1 |
|
79 |
78
|
imbi2d |
|
80 |
79
|
ralbidv |
|
81 |
77 80
|
anbi12d |
|
82 |
81
|
rspcev |
|
83 |
40 55 74 82
|
syl12anc |
|
84 |
|
fveq1 |
|
85 |
84
|
eqeq1d |
|
86 |
|
fveq1 |
|
87 |
86
|
eqeq1d |
|
88 |
|
coeq2 |
|
89 |
88
|
eqeq2d |
|
90 |
89
|
anbi1d |
|
91 |
90
|
riotabidv |
|
92 |
91
|
fveq1d |
|
93 |
92
|
eqeq1d |
|
94 |
85 87 93
|
3anbi123d |
|
95 |
94
|
cbvrexvw |
|
96 |
|
eqeq2 |
|
97 |
96
|
3anbi3d |
|
98 |
97
|
rexbidv |
|
99 |
95 98
|
syl5bb |
|
100 |
99
|
reu8 |
|
101 |
83 100
|
sylibr |
|
102 |
101
|
rexlimdvaa |
|
103 |
16 102
|
mpd |
|