Metamath Proof Explorer


Theorem cvmlift3lem2

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B = C
cvmlift3.y Y = K
cvmlift3.f φ F C CovMap J
cvmlift3.k φ K SConn
cvmlift3.l φ K N-Locally PConn
cvmlift3.o φ O Y
cvmlift3.g φ G K Cn J
cvmlift3.p φ P B
cvmlift3.e φ F P = G O
Assertion cvmlift3lem2 φ X Y ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z

Proof

Step Hyp Ref Expression
1 cvmlift3.b B = C
2 cvmlift3.y Y = K
3 cvmlift3.f φ F C CovMap J
4 cvmlift3.k φ K SConn
5 cvmlift3.l φ K N-Locally PConn
6 cvmlift3.o φ O Y
7 cvmlift3.g φ G K Cn J
8 cvmlift3.p φ P B
9 cvmlift3.e φ F P = G O
10 4 adantr φ X Y K SConn
11 sconnpconn K SConn K PConn
12 10 11 syl φ X Y K PConn
13 6 adantr φ X Y O Y
14 simpr φ X Y X Y
15 2 pconncn K PConn O Y X Y a II Cn K a 0 = O a 1 = X
16 12 13 14 15 syl3anc φ X Y a II Cn K a 0 = O a 1 = X
17 eqid ι g II Cn C | F g = G a g 0 = P = ι g II Cn C | F g = G a g 0 = P
18 3 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X F C CovMap J
19 simprl φ X Y a II Cn K a 0 = O a 1 = X a II Cn K
20 7 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X G K Cn J
21 cnco a II Cn K G K Cn J G a II Cn J
22 19 20 21 syl2anc φ X Y a II Cn K a 0 = O a 1 = X G a II Cn J
23 8 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X P B
24 simprrl φ X Y a II Cn K a 0 = O a 1 = X a 0 = O
25 24 fveq2d φ X Y a II Cn K a 0 = O a 1 = X G a 0 = G O
26 iiuni 0 1 = II
27 26 2 cnf a II Cn K a : 0 1 Y
28 19 27 syl φ X Y a II Cn K a 0 = O a 1 = X a : 0 1 Y
29 0elunit 0 0 1
30 fvco3 a : 0 1 Y 0 0 1 G a 0 = G a 0
31 28 29 30 sylancl φ X Y a II Cn K a 0 = O a 1 = X G a 0 = G a 0
32 9 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X F P = G O
33 25 31 32 3eqtr4rd φ X Y a II Cn K a 0 = O a 1 = X F P = G a 0
34 1 17 18 22 23 33 cvmliftiota φ X Y a II Cn K a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P II Cn C F ι g II Cn C | F g = G a g 0 = P = G a ι g II Cn C | F g = G a g 0 = P 0 = P
35 34 simp1d φ X Y a II Cn K a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P II Cn C
36 26 1 cnf ι g II Cn C | F g = G a g 0 = P II Cn C ι g II Cn C | F g = G a g 0 = P : 0 1 B
37 35 36 syl φ X Y a II Cn K a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P : 0 1 B
38 1elunit 1 0 1
39 ffvelrn ι g II Cn C | F g = G a g 0 = P : 0 1 B 1 0 1 ι g II Cn C | F g = G a g 0 = P 1 B
40 37 38 39 sylancl φ X Y a II Cn K a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P 1 B
41 simprrr φ X Y a II Cn K a 0 = O a 1 = X a 1 = X
42 eqidd φ X Y a II Cn K a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
43 fveq1 f = a f 0 = a 0
44 43 eqeq1d f = a f 0 = O a 0 = O
45 fveq1 f = a f 1 = a 1
46 45 eqeq1d f = a f 1 = X a 1 = X
47 coeq2 f = a G f = G a
48 47 eqeq2d f = a F g = G f F g = G a
49 48 anbi1d f = a F g = G f g 0 = P F g = G a g 0 = P
50 49 riotabidv f = a ι g II Cn C | F g = G f g 0 = P = ι g II Cn C | F g = G a g 0 = P
51 50 fveq1d f = a ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
52 51 eqeq1d f = a ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1 ι g II Cn C | F g = G a g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
53 44 46 52 3anbi123d f = a f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1 a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
54 53 rspcev a II Cn K a 0 = O a 1 = X ι g II Cn C | F g = G a g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1 f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
55 19 24 41 42 54 syl13anc φ X Y a II Cn K a 0 = O a 1 = X f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
56 3 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w F C CovMap J
57 4 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w K SConn
58 5 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w K N-Locally PConn
59 6 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w O Y
60 7 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w G K Cn J
61 8 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w P B
62 9 ad4antr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w F P = G O
63 19 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w a II Cn K
64 24 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w a 0 = O
65 simprl φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w h II Cn K
66 simprr1 φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w h 0 = O
67 41 ad2antrr φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w a 1 = X
68 simprr2 φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w h 1 = X
69 67 68 eqtr4d φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w a 1 = h 1
70 1 2 56 57 58 59 60 61 62 63 64 65 66 69 cvmlift3lem1 φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = ι g II Cn C | F g = G h g 0 = P 1
71 simprr3 φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G h g 0 = P 1 = w
72 70 71 eqtrd φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w
73 72 rexlimdvaa φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w
74 73 ralrimiva φ X Y a II Cn K a 0 = O a 1 = X w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w
75 eqeq2 z = ι g II Cn C | F g = G a g 0 = P 1 ι g II Cn C | F g = G f g 0 = P 1 = z ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
76 75 3anbi3d z = ι g II Cn C | F g = G a g 0 = P 1 f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
77 76 rexbidv z = ι g II Cn C | F g = G a g 0 = P 1 f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1
78 eqeq1 z = ι g II Cn C | F g = G a g 0 = P 1 z = w ι g II Cn C | F g = G a g 0 = P 1 = w
79 78 imbi2d z = ι g II Cn C | F g = G a g 0 = P 1 h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w z = w h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w
80 79 ralbidv z = ι g II Cn C | F g = G a g 0 = P 1 w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w z = w w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w
81 77 80 anbi12d z = ι g II Cn C | F g = G a g 0 = P 1 f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w z = w f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1 w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w
82 81 rspcev ι g II Cn C | F g = G a g 0 = P 1 B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G a g 0 = P 1 w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w ι g II Cn C | F g = G a g 0 = P 1 = w z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w z = w
83 40 55 74 82 syl12anc φ X Y a II Cn K a 0 = O a 1 = X z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w z = w
84 fveq1 f = h f 0 = h 0
85 84 eqeq1d f = h f 0 = O h 0 = O
86 fveq1 f = h f 1 = h 1
87 86 eqeq1d f = h f 1 = X h 1 = X
88 coeq2 f = h G f = G h
89 88 eqeq2d f = h F g = G f F g = G h
90 89 anbi1d f = h F g = G f g 0 = P F g = G h g 0 = P
91 90 riotabidv f = h ι g II Cn C | F g = G f g 0 = P = ι g II Cn C | F g = G h g 0 = P
92 91 fveq1d f = h ι g II Cn C | F g = G f g 0 = P 1 = ι g II Cn C | F g = G h g 0 = P 1
93 92 eqeq1d f = h ι g II Cn C | F g = G f g 0 = P 1 = z ι g II Cn C | F g = G h g 0 = P 1 = z
94 85 87 93 3anbi123d f = h f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = z
95 94 cbvrexvw f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = z
96 eqeq2 z = w ι g II Cn C | F g = G h g 0 = P 1 = z ι g II Cn C | F g = G h g 0 = P 1 = w
97 96 3anbi3d z = w h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = z h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w
98 97 rexbidv z = w h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = z h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w
99 95 98 syl5bb z = w f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w
100 99 reu8 ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z w B h II Cn K h 0 = O h 1 = X ι g II Cn C | F g = G h g 0 = P 1 = w z = w
101 83 100 sylibr φ X Y a II Cn K a 0 = O a 1 = X ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
102 101 rexlimdvaa φ X Y a II Cn K a 0 = O a 1 = X ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
103 16 102 mpd φ X Y ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z