Metamath Proof Explorer


Theorem cvmlift3lem1

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3lem1.1 φMIICnK
cvmlift3lem1.2 φM0=O
cvmlift3lem1.3 φNIICnK
cvmlift3lem1.4 φN0=O
cvmlift3lem1.5 φM1=N1
Assertion cvmlift3lem1 φιgIICnC|Fg=GMg0=P1=ιgIICnC|Fg=GNg0=P1

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3lem1.1 φMIICnK
11 cvmlift3lem1.2 φM0=O
12 cvmlift3lem1.3 φNIICnK
13 cvmlift3lem1.4 φN0=O
14 cvmlift3lem1.5 φM1=N1
15 eqid ιgIICnC|Fg=GMg0=P=ιgIICnC|Fg=GMg0=P
16 eqid ιgIICnC|Fg=GNg0=P=ιgIICnC|Fg=GNg0=P
17 11 fveq2d φGM0=GO
18 9 17 eqtr4d φFP=GM0
19 iiuni 01=II
20 19 2 cnf MIICnKM:01Y
21 10 20 syl φM:01Y
22 0elunit 001
23 fvco3 M:01Y001GM0=GM0
24 21 22 23 sylancl φGM0=GM0
25 18 24 eqtr4d φFP=GM0
26 11 13 eqtr4d φM0=N0
27 4 10 12 26 14 sconnpht2 φMphKN
28 27 7 phtpcco2 φGMphJGN
29 1 15 16 3 8 25 28 cvmliftpht φιgIICnC|Fg=GMg0=PphCιgIICnC|Fg=GNg0=P
30 phtpc01 ιgIICnC|Fg=GMg0=PphCιgIICnC|Fg=GNg0=PιgIICnC|Fg=GMg0=P0=ιgIICnC|Fg=GNg0=P0ιgIICnC|Fg=GMg0=P1=ιgIICnC|Fg=GNg0=P1
31 29 30 syl φιgIICnC|Fg=GMg0=P0=ιgIICnC|Fg=GNg0=P0ιgIICnC|Fg=GMg0=P1=ιgIICnC|Fg=GNg0=P1
32 31 simprd φιgIICnC|Fg=GMg0=P1=ιgIICnC|Fg=GNg0=P1