Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftpht.b |
|
2 |
|
cvmliftpht.m |
|
3 |
|
cvmliftpht.n |
|
4 |
|
cvmliftpht.f |
|
5 |
|
cvmliftpht.p |
|
6 |
|
cvmliftpht.e |
|
7 |
|
cvmliftpht.g |
|
8 |
|
isphtpc |
|
9 |
7 8
|
sylib |
|
10 |
9
|
simp1d |
|
11 |
1 2 4 10 5 6
|
cvmliftiota |
|
12 |
11
|
simp1d |
|
13 |
9
|
simp2d |
|
14 |
|
phtpc01 |
|
15 |
7 14
|
syl |
|
16 |
15
|
simpld |
|
17 |
6 16
|
eqtrd |
|
18 |
1 3 4 13 5 17
|
cvmliftiota |
|
19 |
18
|
simp1d |
|
20 |
9
|
simp3d |
|
21 |
|
n0 |
|
22 |
20 21
|
sylib |
|
23 |
4
|
adantr |
|
24 |
10 13
|
phtpycn |
|
25 |
24
|
sselda |
|
26 |
5
|
adantr |
|
27 |
6
|
adantr |
|
28 |
|
0elunit |
|
29 |
10
|
adantr |
|
30 |
13
|
adantr |
|
31 |
|
simpr |
|
32 |
29 30 31
|
phtpyi |
|
33 |
28 32
|
mpan2 |
|
34 |
33
|
simpld |
|
35 |
27 34
|
eqtr4d |
|
36 |
1 23 25 26 35
|
cvmlift2 |
|
37 |
|
reurex |
|
38 |
36 37
|
syl |
|
39 |
4
|
ad2antrr |
|
40 |
5
|
ad2antrr |
|
41 |
6
|
ad2antrr |
|
42 |
10
|
ad2antrr |
|
43 |
13
|
ad2antrr |
|
44 |
|
simplr |
|
45 |
|
simprl |
|
46 |
|
simprrl |
|
47 |
|
simprrr |
|
48 |
1 2 3 39 40 41 42 43 44 45 46 47
|
cvmliftphtlem |
|
49 |
48
|
ne0d |
|
50 |
38 49
|
rexlimddv |
|
51 |
22 50
|
exlimddv |
|
52 |
|
isphtpc |
|
53 |
12 19 51 52
|
syl3anbrc |
|