| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftpht.b |  | 
						
							| 2 |  | cvmliftpht.m |  | 
						
							| 3 |  | cvmliftpht.n |  | 
						
							| 4 |  | cvmliftpht.f |  | 
						
							| 5 |  | cvmliftpht.p |  | 
						
							| 6 |  | cvmliftpht.e |  | 
						
							| 7 |  | cvmliftpht.g |  | 
						
							| 8 |  | isphtpc |  | 
						
							| 9 | 7 8 | sylib |  | 
						
							| 10 | 9 | simp1d |  | 
						
							| 11 | 1 2 4 10 5 6 | cvmliftiota |  | 
						
							| 12 | 11 | simp1d |  | 
						
							| 13 | 9 | simp2d |  | 
						
							| 14 |  | phtpc01 |  | 
						
							| 15 | 7 14 | syl |  | 
						
							| 16 | 15 | simpld |  | 
						
							| 17 | 6 16 | eqtrd |  | 
						
							| 18 | 1 3 4 13 5 17 | cvmliftiota |  | 
						
							| 19 | 18 | simp1d |  | 
						
							| 20 | 9 | simp3d |  | 
						
							| 21 |  | n0 |  | 
						
							| 22 | 20 21 | sylib |  | 
						
							| 23 | 4 | adantr |  | 
						
							| 24 | 10 13 | phtpycn |  | 
						
							| 25 | 24 | sselda |  | 
						
							| 26 | 5 | adantr |  | 
						
							| 27 | 6 | adantr |  | 
						
							| 28 |  | 0elunit |  | 
						
							| 29 | 10 | adantr |  | 
						
							| 30 | 13 | adantr |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 29 30 31 | phtpyi |  | 
						
							| 33 | 28 32 | mpan2 |  | 
						
							| 34 | 33 | simpld |  | 
						
							| 35 | 27 34 | eqtr4d |  | 
						
							| 36 | 1 23 25 26 35 | cvmlift2 |  | 
						
							| 37 |  | reurex |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 | 4 | ad2antrr |  | 
						
							| 40 | 5 | ad2antrr |  | 
						
							| 41 | 6 | ad2antrr |  | 
						
							| 42 | 10 | ad2antrr |  | 
						
							| 43 | 13 | ad2antrr |  | 
						
							| 44 |  | simplr |  | 
						
							| 45 |  | simprl |  | 
						
							| 46 |  | simprrl |  | 
						
							| 47 |  | simprrr |  | 
						
							| 48 | 1 2 3 39 40 41 42 43 44 45 46 47 | cvmliftphtlem |  | 
						
							| 49 | 48 | ne0d |  | 
						
							| 50 | 38 49 | rexlimddv |  | 
						
							| 51 | 22 50 | exlimddv |  | 
						
							| 52 |  | isphtpc |  | 
						
							| 53 | 12 19 51 52 | syl3anbrc |  |