| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftpht.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmliftpht.m | ⊢ 𝑀  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 3 |  | cvmliftpht.n | ⊢ 𝑁  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 4 |  | cvmliftpht.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftpht.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 6 |  | cvmliftpht.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 7 |  | cvmliftpht.g | ⊢ ( 𝜑  →  𝐺 (  ≃ph ‘ 𝐽 ) 𝐻 ) | 
						
							| 8 |  | isphtpc | ⊢ ( 𝐺 (  ≃ph ‘ 𝐽 ) 𝐻  ↔  ( 𝐺  ∈  ( II  Cn  𝐽 )  ∧  𝐻  ∈  ( II  Cn  𝐽 )  ∧  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 )  ≠  ∅ ) ) | 
						
							| 9 | 7 8 | sylib | ⊢ ( 𝜑  →  ( 𝐺  ∈  ( II  Cn  𝐽 )  ∧  𝐻  ∈  ( II  Cn  𝐽 )  ∧  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 )  ≠  ∅ ) ) | 
						
							| 10 | 9 | simp1d | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 11 | 1 2 4 10 5 6 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝑀 )  =  𝐺  ∧  ( 𝑀 ‘ 0 )  =  𝑃 ) ) | 
						
							| 12 | 11 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 13 | 9 | simp2d | ⊢ ( 𝜑  →  𝐻  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 14 |  | phtpc01 | ⊢ ( 𝐺 (  ≃ph ‘ 𝐽 ) 𝐻  →  ( ( 𝐺 ‘ 0 )  =  ( 𝐻 ‘ 0 )  ∧  ( 𝐺 ‘ 1 )  =  ( 𝐻 ‘ 1 ) ) ) | 
						
							| 15 | 7 14 | syl | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 0 )  =  ( 𝐻 ‘ 0 )  ∧  ( 𝐺 ‘ 1 )  =  ( 𝐻 ‘ 1 ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  ( 𝐺 ‘ 0 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 17 | 6 16 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 18 | 1 3 4 13 5 17 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝑁 )  =  𝐻  ∧  ( 𝑁 ‘ 0 )  =  𝑃 ) ) | 
						
							| 19 | 18 | simp1d | ⊢ ( 𝜑  →  𝑁  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 20 | 9 | simp3d | ⊢ ( 𝜑  →  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 )  ≠  ∅ ) | 
						
							| 21 |  | n0 | ⊢ ( ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 )  ≠  ∅  ↔  ∃ 𝑔 𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) | 
						
							| 22 | 20 21 | sylib | ⊢ ( 𝜑  →  ∃ 𝑔 𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) | 
						
							| 23 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 24 | 10 13 | phtpycn | ⊢ ( 𝜑  →  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 )  ⊆  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 25 | 24 | sselda | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  𝑔  ∈  ( ( II  ×t  II )  Cn  𝐽 ) ) | 
						
							| 26 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 27 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 28 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 29 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 30 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  𝐻  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 31 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) | 
						
							| 32 | 29 30 31 | phtpyi | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 0 𝑔 0 )  =  ( 𝐺 ‘ 0 )  ∧  ( 1 𝑔 0 )  =  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 33 | 28 32 | mpan2 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ( ( 0 𝑔 0 )  =  ( 𝐺 ‘ 0 )  ∧  ( 1 𝑔 0 )  =  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 34 | 33 | simpld | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ( 0 𝑔 0 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 35 | 27 34 | eqtr4d | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 0 𝑔 0 ) ) | 
						
							| 36 | 1 23 25 26 35 | cvmlift2 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ∃! ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) | 
						
							| 37 |  | reurex | ⊢ ( ∃! ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 )  →  ∃ ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ∃ ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) | 
						
							| 39 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 40 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 41 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 42 | 10 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 43 | 13 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  𝐻  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 44 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) | 
						
							| 45 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ) | 
						
							| 46 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  ( 𝐹  ∘  ℎ )  =  𝑔 ) | 
						
							| 47 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  ( 0 ℎ 0 )  =  𝑃 ) | 
						
							| 48 | 1 2 3 39 40 41 42 43 44 45 46 47 | cvmliftphtlem | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  ℎ  ∈  ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ) | 
						
							| 49 | 48 | ne0d | ⊢ ( ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  ∧  ( ℎ  ∈  ( ( II  ×t  II )  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  ℎ )  =  𝑔  ∧  ( 0 ℎ 0 )  =  𝑃 ) ) )  →  ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 )  ≠  ∅ ) | 
						
							| 50 | 38 49 | rexlimddv | ⊢ ( ( 𝜑  ∧  𝑔  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )  →  ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 )  ≠  ∅ ) | 
						
							| 51 | 22 50 | exlimddv | ⊢ ( 𝜑  →  ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 )  ≠  ∅ ) | 
						
							| 52 |  | isphtpc | ⊢ ( 𝑀 (  ≃ph ‘ 𝐶 ) 𝑁  ↔  ( 𝑀  ∈  ( II  Cn  𝐶 )  ∧  𝑁  ∈  ( II  Cn  𝐶 )  ∧  ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 )  ≠  ∅ ) ) | 
						
							| 53 | 12 19 51 52 | syl3anbrc | ⊢ ( 𝜑  →  𝑀 (  ≃ph ‘ 𝐶 ) 𝑁 ) |