Metamath Proof Explorer


Theorem cvmliftpht

Description: If G and H are path-homotopic, then their lifts M and N are also path-homotopic. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmliftpht.b 𝐵 = 𝐶
cvmliftpht.m 𝑀 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
cvmliftpht.n 𝑁 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
cvmliftpht.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftpht.p ( 𝜑𝑃𝐵 )
cvmliftpht.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftpht.g ( 𝜑𝐺 ( ≃ph𝐽 ) 𝐻 )
Assertion cvmliftpht ( 𝜑𝑀 ( ≃ph𝐶 ) 𝑁 )

Proof

Step Hyp Ref Expression
1 cvmliftpht.b 𝐵 = 𝐶
2 cvmliftpht.m 𝑀 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
3 cvmliftpht.n 𝑁 = ( 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
4 cvmliftpht.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftpht.p ( 𝜑𝑃𝐵 )
6 cvmliftpht.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
7 cvmliftpht.g ( 𝜑𝐺 ( ≃ph𝐽 ) 𝐻 )
8 isphtpc ( 𝐺 ( ≃ph𝐽 ) 𝐻 ↔ ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) )
9 7 8 sylib ( 𝜑 → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) )
10 9 simp1d ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
11 1 2 4 10 5 6 cvmliftiota ( 𝜑 → ( 𝑀 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝑀 ) = 𝐺 ∧ ( 𝑀 ‘ 0 ) = 𝑃 ) )
12 11 simp1d ( 𝜑𝑀 ∈ ( II Cn 𝐶 ) )
13 9 simp2d ( 𝜑𝐻 ∈ ( II Cn 𝐽 ) )
14 phtpc01 ( 𝐺 ( ≃ph𝐽 ) 𝐻 → ( ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) )
15 7 14 syl ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) )
16 15 simpld ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) )
17 6 16 eqtrd ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐻 ‘ 0 ) )
18 1 3 4 13 5 17 cvmliftiota ( 𝜑 → ( 𝑁 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝑁 ) = 𝐻 ∧ ( 𝑁 ‘ 0 ) = 𝑃 ) )
19 18 simp1d ( 𝜑𝑁 ∈ ( II Cn 𝐶 ) )
20 9 simp3d ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ )
21 n0 ( ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )
22 20 21 sylib ( 𝜑 → ∃ 𝑔 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )
23 4 adantr ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
24 10 13 phtpycn ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) )
25 24 sselda ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝑔 ∈ ( ( II ×t II ) Cn 𝐽 ) )
26 5 adantr ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝑃𝐵 )
27 6 adantr ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
28 0elunit 0 ∈ ( 0 [,] 1 )
29 10 adantr ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝐺 ∈ ( II Cn 𝐽 ) )
30 13 adantr ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝐻 ∈ ( II Cn 𝐽 ) )
31 simpr ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )
32 29 30 31 phtpyi ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑔 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑔 0 ) = ( 𝐺 ‘ 1 ) ) )
33 28 32 mpan2 ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( ( 0 𝑔 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑔 0 ) = ( 𝐺 ‘ 1 ) ) )
34 33 simpld ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 0 𝑔 0 ) = ( 𝐺 ‘ 0 ) )
35 27 34 eqtr4d ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 𝐹𝑃 ) = ( 0 𝑔 0 ) )
36 1 23 25 26 35 cvmlift2 ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ∃! ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) )
37 reurex ( ∃! ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) → ∃ ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) )
38 36 37 syl ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ∃ ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) )
39 4 ad2antrr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
40 5 ad2antrr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → 𝑃𝐵 )
41 6 ad2antrr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
42 10 ad2antrr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → 𝐺 ∈ ( II Cn 𝐽 ) )
43 13 ad2antrr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → 𝐻 ∈ ( II Cn 𝐽 ) )
44 simplr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) )
45 simprl ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → ∈ ( ( II ×t II ) Cn 𝐶 ) )
46 simprrl ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → ( 𝐹 ) = 𝑔 )
47 simprrr ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → ( 0 0 ) = 𝑃 )
48 1 2 3 39 40 41 42 43 44 45 46 47 cvmliftphtlem ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → ∈ ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) )
49 48 ne0d ( ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ) = 𝑔 ∧ ( 0 0 ) = 𝑃 ) ) ) → ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ )
50 38 49 rexlimddv ( ( 𝜑𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ )
51 22 50 exlimddv ( 𝜑 → ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ )
52 isphtpc ( 𝑀 ( ≃ph𝐶 ) 𝑁 ↔ ( 𝑀 ∈ ( II Cn 𝐶 ) ∧ 𝑁 ∈ ( II Cn 𝐶 ) ∧ ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ ) )
53 12 19 51 52 syl3anbrc ( 𝜑𝑀 ( ≃ph𝐶 ) 𝑁 )