Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftpht.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmliftpht.m |
⊢ 𝑀 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
3 |
|
cvmliftpht.n |
⊢ 𝑁 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
4 |
|
cvmliftpht.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftpht.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
cvmliftpht.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
7 |
|
cvmliftpht.g |
⊢ ( 𝜑 → 𝐺 ( ≃ph ‘ 𝐽 ) 𝐻 ) |
8 |
|
isphtpc |
⊢ ( 𝐺 ( ≃ph ‘ 𝐽 ) 𝐻 ↔ ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → ( 𝐺 ∈ ( II Cn 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ∧ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) ) |
10 |
9
|
simp1d |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
11 |
1 2 4 10 5 6
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑀 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑀 ) = 𝐺 ∧ ( 𝑀 ‘ 0 ) = 𝑃 ) ) |
12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( II Cn 𝐶 ) ) |
13 |
9
|
simp2d |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
14 |
|
phtpc01 |
⊢ ( 𝐺 ( ≃ph ‘ 𝐽 ) 𝐻 → ( ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
15 |
7 14
|
syl |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
17 |
6 16
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐻 ‘ 0 ) ) |
18 |
1 3 4 13 5 17
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑁 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑁 ) = 𝐻 ∧ ( 𝑁 ‘ 0 ) = 𝑃 ) ) |
19 |
18
|
simp1d |
⊢ ( 𝜑 → 𝑁 ∈ ( II Cn 𝐶 ) ) |
20 |
9
|
simp3d |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ) |
21 |
|
n0 |
⊢ ( ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
22 |
20 21
|
sylib |
⊢ ( 𝜑 → ∃ 𝑔 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
23 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
24 |
10 13
|
phtpycn |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( ( II ×t II ) Cn 𝐽 ) ) |
25 |
24
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝑔 ∈ ( ( II ×t II ) Cn 𝐽 ) ) |
26 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝑃 ∈ 𝐵 ) |
27 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
28 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
29 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
30 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝐻 ∈ ( II Cn 𝐽 ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
32 |
29 30 31
|
phtpyi |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝑔 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑔 0 ) = ( 𝐺 ‘ 1 ) ) ) |
33 |
28 32
|
mpan2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( ( 0 𝑔 0 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝑔 0 ) = ( 𝐺 ‘ 1 ) ) ) |
34 |
33
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 0 𝑔 0 ) = ( 𝐺 ‘ 0 ) ) |
35 |
27 34
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 0 𝑔 0 ) ) |
36 |
1 23 25 26 35
|
cvmlift2 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ∃! ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) |
37 |
|
reurex |
⊢ ( ∃! ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) → ∃ ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ∃ ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) |
39 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
40 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → 𝑃 ∈ 𝐵 ) |
41 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
42 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
43 |
13
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → 𝐻 ∈ ( II Cn 𝐽 ) ) |
44 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
45 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ) |
46 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → ( 𝐹 ∘ ℎ ) = 𝑔 ) |
47 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → ( 0 ℎ 0 ) = 𝑃 ) |
48 |
1 2 3 39 40 41 42 43 44 45 46 47
|
cvmliftphtlem |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → ℎ ∈ ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ) |
49 |
48
|
ne0d |
⊢ ( ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) ∧ ( ℎ ∈ ( ( II ×t II ) Cn 𝐶 ) ∧ ( ( 𝐹 ∘ ℎ ) = 𝑔 ∧ ( 0 ℎ 0 ) = 𝑃 ) ) ) → ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ ) |
50 |
38 49
|
rexlimddv |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) → ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ ) |
51 |
22 50
|
exlimddv |
⊢ ( 𝜑 → ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ ) |
52 |
|
isphtpc |
⊢ ( 𝑀 ( ≃ph ‘ 𝐶 ) 𝑁 ↔ ( 𝑀 ∈ ( II Cn 𝐶 ) ∧ 𝑁 ∈ ( II Cn 𝐶 ) ∧ ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ≠ ∅ ) ) |
53 |
12 19 51 52
|
syl3anbrc |
⊢ ( 𝜑 → 𝑀 ( ≃ph ‘ 𝐶 ) 𝑁 ) |