Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmlift3.y |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cvmlift3.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmlift3.k |
⊢ ( 𝜑 → 𝐾 ∈ SConn ) |
5 |
|
cvmlift3.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally PConn ) |
6 |
|
cvmlift3.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
7 |
|
cvmlift3.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
8 |
|
cvmlift3.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
9 |
|
cvmlift3.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
10 |
|
cvmlift3lem1.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( II Cn 𝐾 ) ) |
11 |
|
cvmlift3lem1.2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 0 ) = 𝑂 ) |
12 |
|
cvmlift3lem1.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( II Cn 𝐾 ) ) |
13 |
|
cvmlift3lem1.4 |
⊢ ( 𝜑 → ( 𝑁 ‘ 0 ) = 𝑂 ) |
14 |
|
cvmlift3lem1.5 |
⊢ ( 𝜑 → ( 𝑀 ‘ 1 ) = ( 𝑁 ‘ 1 ) ) |
15 |
|
eqid |
⊢ ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
16 |
|
eqid |
⊢ ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
17 |
11
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) = ( 𝐺 ‘ 𝑂 ) ) |
18 |
9 17
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) ) |
19 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
20 |
19 2
|
cnf |
⊢ ( 𝑀 ∈ ( II Cn 𝐾 ) → 𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 ) |
21 |
10 20
|
syl |
⊢ ( 𝜑 → 𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 ) |
22 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
23 |
|
fvco3 |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐺 ∘ 𝑀 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) ) |
24 |
21 22 23
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝑀 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) ) |
25 |
18 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( ( 𝐺 ∘ 𝑀 ) ‘ 0 ) ) |
26 |
11 13
|
eqtr4d |
⊢ ( 𝜑 → ( 𝑀 ‘ 0 ) = ( 𝑁 ‘ 0 ) ) |
27 |
4 10 12 26 14
|
sconnpht2 |
⊢ ( 𝜑 → 𝑀 ( ≃ph ‘ 𝐾 ) 𝑁 ) |
28 |
27 7
|
phtpcco2 |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝑀 ) ( ≃ph ‘ 𝐽 ) ( 𝐺 ∘ 𝑁 ) ) |
29 |
1 15 16 3 8 25 28
|
cvmliftpht |
⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ( ≃ph ‘ 𝐶 ) ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
30 |
|
phtpc01 |
⊢ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ( ≃ph ‘ 𝐶 ) ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) → ( ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) ) |
31 |
29 30
|
syl |
⊢ ( 𝜑 → ( ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) ∧ ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) ) |
32 |
31
|
simprd |
⊢ ( 𝜑 → ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = ( 𝐺 ∘ 𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) |