Metamath Proof Explorer


Theorem cvmlift3lem1

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmlift3.k ( 𝜑𝐾 ∈ SConn )
cvmlift3.l ( 𝜑𝐾 ∈ 𝑛-Locally PConn )
cvmlift3.o ( 𝜑𝑂𝑌 )
cvmlift3.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
cvmlift3.p ( 𝜑𝑃𝐵 )
cvmlift3.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
cvmlift3lem1.1 ( 𝜑𝑀 ∈ ( II Cn 𝐾 ) )
cvmlift3lem1.2 ( 𝜑 → ( 𝑀 ‘ 0 ) = 𝑂 )
cvmlift3lem1.3 ( 𝜑𝑁 ∈ ( II Cn 𝐾 ) )
cvmlift3lem1.4 ( 𝜑 → ( 𝑁 ‘ 0 ) = 𝑂 )
cvmlift3lem1.5 ( 𝜑 → ( 𝑀 ‘ 1 ) = ( 𝑁 ‘ 1 ) )
Assertion cvmlift3lem1 ( 𝜑 → ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) )

Proof

Step Hyp Ref Expression
1 cvmlift3.b 𝐵 = 𝐶
2 cvmlift3.y 𝑌 = 𝐾
3 cvmlift3.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
4 cvmlift3.k ( 𝜑𝐾 ∈ SConn )
5 cvmlift3.l ( 𝜑𝐾 ∈ 𝑛-Locally PConn )
6 cvmlift3.o ( 𝜑𝑂𝑌 )
7 cvmlift3.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
8 cvmlift3.p ( 𝜑𝑃𝐵 )
9 cvmlift3.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
10 cvmlift3lem1.1 ( 𝜑𝑀 ∈ ( II Cn 𝐾 ) )
11 cvmlift3lem1.2 ( 𝜑 → ( 𝑀 ‘ 0 ) = 𝑂 )
12 cvmlift3lem1.3 ( 𝜑𝑁 ∈ ( II Cn 𝐾 ) )
13 cvmlift3lem1.4 ( 𝜑 → ( 𝑁 ‘ 0 ) = 𝑂 )
14 cvmlift3lem1.5 ( 𝜑 → ( 𝑀 ‘ 1 ) = ( 𝑁 ‘ 1 ) )
15 eqid ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) )
16 eqid ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) = ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) )
17 11 fveq2d ( 𝜑 → ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) = ( 𝐺𝑂 ) )
18 9 17 eqtr4d ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) )
19 iiuni ( 0 [,] 1 ) = II
20 19 2 cnf ( 𝑀 ∈ ( II Cn 𝐾 ) → 𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 )
21 10 20 syl ( 𝜑𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 )
22 0elunit 0 ∈ ( 0 [,] 1 )
23 fvco3 ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( ( 𝐺𝑀 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) )
24 21 22 23 sylancl ( 𝜑 → ( ( 𝐺𝑀 ) ‘ 0 ) = ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) )
25 18 24 eqtr4d ( 𝜑 → ( 𝐹𝑃 ) = ( ( 𝐺𝑀 ) ‘ 0 ) )
26 11 13 eqtr4d ( 𝜑 → ( 𝑀 ‘ 0 ) = ( 𝑁 ‘ 0 ) )
27 4 10 12 26 14 sconnpht2 ( 𝜑𝑀 ( ≃ph𝐾 ) 𝑁 )
28 27 7 phtpcco2 ( 𝜑 → ( 𝐺𝑀 ) ( ≃ph𝐽 ) ( 𝐺𝑁 ) )
29 1 15 16 3 8 25 28 cvmliftpht ( 𝜑 → ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ( ≃ph𝐶 ) ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) )
30 phtpc01 ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ( ≃ph𝐶 ) ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) = ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) )
31 29 30 syl ( 𝜑 → ( ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) = ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 0 ) ∧ ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) ) )
32 31 simprd ( 𝜑 → ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑀 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) = ( ( 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑔 ) = ( 𝐺𝑁 ) ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ‘ 1 ) )