| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmlift3.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmlift3.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmlift3.k | ⊢ ( 𝜑  →  𝐾  ∈  SConn ) | 
						
							| 5 |  | cvmlift3.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  PConn ) | 
						
							| 6 |  | cvmlift3.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmlift3.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmlift3.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmlift3.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 |  | cvmlift3lem1.1 | ⊢ ( 𝜑  →  𝑀  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 11 |  | cvmlift3lem1.2 | ⊢ ( 𝜑  →  ( 𝑀 ‘ 0 )  =  𝑂 ) | 
						
							| 12 |  | cvmlift3lem1.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( II  Cn  𝐾 ) ) | 
						
							| 13 |  | cvmlift3lem1.4 | ⊢ ( 𝜑  →  ( 𝑁 ‘ 0 )  =  𝑂 ) | 
						
							| 14 |  | cvmlift3lem1.5 | ⊢ ( 𝜑  →  ( 𝑀 ‘ 1 )  =  ( 𝑁 ‘ 1 ) ) | 
						
							| 15 |  | eqid | ⊢ ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 16 |  | eqid | ⊢ ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  =  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) | 
						
							| 17 | 11 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 𝑀 ‘ 0 ) )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 18 | 9 17 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) ) | 
						
							| 19 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 20 | 19 2 | cnf | ⊢ ( 𝑀  ∈  ( II  Cn  𝐾 )  →  𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 21 | 10 20 | syl | ⊢ ( 𝜑  →  𝑀 : ( 0 [,] 1 ) ⟶ 𝑌 ) | 
						
							| 22 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 23 |  | fvco3 | ⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝑌  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐺  ∘  𝑀 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) ) | 
						
							| 24 | 21 22 23 | sylancl | ⊢ ( 𝜑  →  ( ( 𝐺  ∘  𝑀 ) ‘ 0 )  =  ( 𝐺 ‘ ( 𝑀 ‘ 0 ) ) ) | 
						
							| 25 | 18 24 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( ( 𝐺  ∘  𝑀 ) ‘ 0 ) ) | 
						
							| 26 | 11 13 | eqtr4d | ⊢ ( 𝜑  →  ( 𝑀 ‘ 0 )  =  ( 𝑁 ‘ 0 ) ) | 
						
							| 27 | 4 10 12 26 14 | sconnpht2 | ⊢ ( 𝜑  →  𝑀 (  ≃ph ‘ 𝐾 ) 𝑁 ) | 
						
							| 28 | 27 7 | phtpcco2 | ⊢ ( 𝜑  →  ( 𝐺  ∘  𝑀 ) (  ≃ph ‘ 𝐽 ) ( 𝐺  ∘  𝑁 ) ) | 
						
							| 29 | 1 15 16 3 8 25 28 | cvmliftpht | ⊢ ( 𝜑  →  ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) (  ≃ph ‘ 𝐶 ) ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 30 |  | phtpc01 | ⊢ ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) (  ≃ph ‘ 𝐶 ) ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) )  →  ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 0 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 0 )  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( 𝜑  →  ( ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 0 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 0 )  ∧  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) ) | 
						
							| 32 | 31 | simprd | ⊢ ( 𝜑  →  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑀 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 )  =  ( ( ℩ 𝑔  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑔 )  =  ( 𝐺  ∘  𝑁 )  ∧  ( 𝑔 ‘ 0 )  =  𝑃 ) ) ‘ 1 ) ) |