| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmlift3.b |
|- B = U. C |
| 2 |
|
cvmlift3.y |
|- Y = U. K |
| 3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
| 5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
| 6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
| 7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
| 8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
| 9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
| 10 |
|
cvmlift3lem1.1 |
|- ( ph -> M e. ( II Cn K ) ) |
| 11 |
|
cvmlift3lem1.2 |
|- ( ph -> ( M ` 0 ) = O ) |
| 12 |
|
cvmlift3lem1.3 |
|- ( ph -> N e. ( II Cn K ) ) |
| 13 |
|
cvmlift3lem1.4 |
|- ( ph -> ( N ` 0 ) = O ) |
| 14 |
|
cvmlift3lem1.5 |
|- ( ph -> ( M ` 1 ) = ( N ` 1 ) ) |
| 15 |
|
eqid |
|- ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) |
| 16 |
|
eqid |
|- ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) |
| 17 |
11
|
fveq2d |
|- ( ph -> ( G ` ( M ` 0 ) ) = ( G ` O ) ) |
| 18 |
9 17
|
eqtr4d |
|- ( ph -> ( F ` P ) = ( G ` ( M ` 0 ) ) ) |
| 19 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 20 |
19 2
|
cnf |
|- ( M e. ( II Cn K ) -> M : ( 0 [,] 1 ) --> Y ) |
| 21 |
10 20
|
syl |
|- ( ph -> M : ( 0 [,] 1 ) --> Y ) |
| 22 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 23 |
|
fvco3 |
|- ( ( M : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. M ) ` 0 ) = ( G ` ( M ` 0 ) ) ) |
| 24 |
21 22 23
|
sylancl |
|- ( ph -> ( ( G o. M ) ` 0 ) = ( G ` ( M ` 0 ) ) ) |
| 25 |
18 24
|
eqtr4d |
|- ( ph -> ( F ` P ) = ( ( G o. M ) ` 0 ) ) |
| 26 |
11 13
|
eqtr4d |
|- ( ph -> ( M ` 0 ) = ( N ` 0 ) ) |
| 27 |
4 10 12 26 14
|
sconnpht2 |
|- ( ph -> M ( ~=ph ` K ) N ) |
| 28 |
27 7
|
phtpcco2 |
|- ( ph -> ( G o. M ) ( ~=ph ` J ) ( G o. N ) ) |
| 29 |
1 15 16 3 8 25 28
|
cvmliftpht |
|- ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ( ~=ph ` C ) ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ) |
| 30 |
|
phtpc01 |
|- ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ( ~=ph ` C ) ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 0 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 0 ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
| 31 |
29 30
|
syl |
|- ( ph -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 0 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 0 ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
| 32 |
31
|
simprd |
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |