Metamath Proof Explorer


Theorem cvmlift3lem1

Description: Lemma for cvmlift3 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b
|- B = U. C
cvmlift3.y
|- Y = U. K
cvmlift3.f
|- ( ph -> F e. ( C CovMap J ) )
cvmlift3.k
|- ( ph -> K e. SConn )
cvmlift3.l
|- ( ph -> K e. N-Locally PConn )
cvmlift3.o
|- ( ph -> O e. Y )
cvmlift3.g
|- ( ph -> G e. ( K Cn J ) )
cvmlift3.p
|- ( ph -> P e. B )
cvmlift3.e
|- ( ph -> ( F ` P ) = ( G ` O ) )
cvmlift3lem1.1
|- ( ph -> M e. ( II Cn K ) )
cvmlift3lem1.2
|- ( ph -> ( M ` 0 ) = O )
cvmlift3lem1.3
|- ( ph -> N e. ( II Cn K ) )
cvmlift3lem1.4
|- ( ph -> ( N ` 0 ) = O )
cvmlift3lem1.5
|- ( ph -> ( M ` 1 ) = ( N ` 1 ) )
Assertion cvmlift3lem1
|- ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) )

Proof

Step Hyp Ref Expression
1 cvmlift3.b
 |-  B = U. C
2 cvmlift3.y
 |-  Y = U. K
3 cvmlift3.f
 |-  ( ph -> F e. ( C CovMap J ) )
4 cvmlift3.k
 |-  ( ph -> K e. SConn )
5 cvmlift3.l
 |-  ( ph -> K e. N-Locally PConn )
6 cvmlift3.o
 |-  ( ph -> O e. Y )
7 cvmlift3.g
 |-  ( ph -> G e. ( K Cn J ) )
8 cvmlift3.p
 |-  ( ph -> P e. B )
9 cvmlift3.e
 |-  ( ph -> ( F ` P ) = ( G ` O ) )
10 cvmlift3lem1.1
 |-  ( ph -> M e. ( II Cn K ) )
11 cvmlift3lem1.2
 |-  ( ph -> ( M ` 0 ) = O )
12 cvmlift3lem1.3
 |-  ( ph -> N e. ( II Cn K ) )
13 cvmlift3lem1.4
 |-  ( ph -> ( N ` 0 ) = O )
14 cvmlift3lem1.5
 |-  ( ph -> ( M ` 1 ) = ( N ` 1 ) )
15 eqid
 |-  ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) )
16 eqid
 |-  ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) )
17 11 fveq2d
 |-  ( ph -> ( G ` ( M ` 0 ) ) = ( G ` O ) )
18 9 17 eqtr4d
 |-  ( ph -> ( F ` P ) = ( G ` ( M ` 0 ) ) )
19 iiuni
 |-  ( 0 [,] 1 ) = U. II
20 19 2 cnf
 |-  ( M e. ( II Cn K ) -> M : ( 0 [,] 1 ) --> Y )
21 10 20 syl
 |-  ( ph -> M : ( 0 [,] 1 ) --> Y )
22 0elunit
 |-  0 e. ( 0 [,] 1 )
23 fvco3
 |-  ( ( M : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. M ) ` 0 ) = ( G ` ( M ` 0 ) ) )
24 21 22 23 sylancl
 |-  ( ph -> ( ( G o. M ) ` 0 ) = ( G ` ( M ` 0 ) ) )
25 18 24 eqtr4d
 |-  ( ph -> ( F ` P ) = ( ( G o. M ) ` 0 ) )
26 11 13 eqtr4d
 |-  ( ph -> ( M ` 0 ) = ( N ` 0 ) )
27 4 10 12 26 14 sconnpht2
 |-  ( ph -> M ( ~=ph ` K ) N )
28 27 7 phtpcco2
 |-  ( ph -> ( G o. M ) ( ~=ph ` J ) ( G o. N ) )
29 1 15 16 3 8 25 28 cvmliftpht
 |-  ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ( ~=ph ` C ) ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) )
30 phtpc01
 |-  ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ( ~=ph ` C ) ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 0 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 0 ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) )
31 29 30 syl
 |-  ( ph -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 0 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 0 ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) )
32 31 simprd
 |-  ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) )