| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | cvmlift3lem1.1 |  |-  ( ph -> M e. ( II Cn K ) ) | 
						
							| 11 |  | cvmlift3lem1.2 |  |-  ( ph -> ( M ` 0 ) = O ) | 
						
							| 12 |  | cvmlift3lem1.3 |  |-  ( ph -> N e. ( II Cn K ) ) | 
						
							| 13 |  | cvmlift3lem1.4 |  |-  ( ph -> ( N ` 0 ) = O ) | 
						
							| 14 |  | cvmlift3lem1.5 |  |-  ( ph -> ( M ` 1 ) = ( N ` 1 ) ) | 
						
							| 15 |  | eqid |  |-  ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) | 
						
							| 16 |  | eqid |  |-  ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) | 
						
							| 17 | 11 | fveq2d |  |-  ( ph -> ( G ` ( M ` 0 ) ) = ( G ` O ) ) | 
						
							| 18 | 9 17 | eqtr4d |  |-  ( ph -> ( F ` P ) = ( G ` ( M ` 0 ) ) ) | 
						
							| 19 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 20 | 19 2 | cnf |  |-  ( M e. ( II Cn K ) -> M : ( 0 [,] 1 ) --> Y ) | 
						
							| 21 | 10 20 | syl |  |-  ( ph -> M : ( 0 [,] 1 ) --> Y ) | 
						
							| 22 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 23 |  | fvco3 |  |-  ( ( M : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. M ) ` 0 ) = ( G ` ( M ` 0 ) ) ) | 
						
							| 24 | 21 22 23 | sylancl |  |-  ( ph -> ( ( G o. M ) ` 0 ) = ( G ` ( M ` 0 ) ) ) | 
						
							| 25 | 18 24 | eqtr4d |  |-  ( ph -> ( F ` P ) = ( ( G o. M ) ` 0 ) ) | 
						
							| 26 | 11 13 | eqtr4d |  |-  ( ph -> ( M ` 0 ) = ( N ` 0 ) ) | 
						
							| 27 | 4 10 12 26 14 | sconnpht2 |  |-  ( ph -> M ( ~=ph ` K ) N ) | 
						
							| 28 | 27 7 | phtpcco2 |  |-  ( ph -> ( G o. M ) ( ~=ph ` J ) ( G o. N ) ) | 
						
							| 29 | 1 15 16 3 8 25 28 | cvmliftpht |  |-  ( ph -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ( ~=ph ` C ) ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ) | 
						
							| 30 |  | phtpc01 |  |-  ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ( ~=ph ` C ) ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 0 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 0 ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) | 
						
							| 31 | 29 30 | syl |  |-  ( ph -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 0 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 0 ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) | 
						
							| 32 | 31 | simprd |  |-  ( ph -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. M ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. N ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |