Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
|- B = U. C |
2 |
|
cvmlift3.y |
|- Y = U. K |
3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
10 |
4
|
adantr |
|- ( ( ph /\ X e. Y ) -> K e. SConn ) |
11 |
|
sconnpconn |
|- ( K e. SConn -> K e. PConn ) |
12 |
10 11
|
syl |
|- ( ( ph /\ X e. Y ) -> K e. PConn ) |
13 |
6
|
adantr |
|- ( ( ph /\ X e. Y ) -> O e. Y ) |
14 |
|
simpr |
|- ( ( ph /\ X e. Y ) -> X e. Y ) |
15 |
2
|
pconncn |
|- ( ( K e. PConn /\ O e. Y /\ X e. Y ) -> E. a e. ( II Cn K ) ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) |
16 |
12 13 14 15
|
syl3anc |
|- ( ( ph /\ X e. Y ) -> E. a e. ( II Cn K ) ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) |
17 |
|
eqid |
|- ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) |
18 |
3
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> F e. ( C CovMap J ) ) |
19 |
|
simprl |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> a e. ( II Cn K ) ) |
20 |
7
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> G e. ( K Cn J ) ) |
21 |
|
cnco |
|- ( ( a e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. a ) e. ( II Cn J ) ) |
22 |
19 20 21
|
syl2anc |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( G o. a ) e. ( II Cn J ) ) |
23 |
8
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> P e. B ) |
24 |
|
simprrl |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( a ` 0 ) = O ) |
25 |
24
|
fveq2d |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( G ` ( a ` 0 ) ) = ( G ` O ) ) |
26 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
27 |
26 2
|
cnf |
|- ( a e. ( II Cn K ) -> a : ( 0 [,] 1 ) --> Y ) |
28 |
19 27
|
syl |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> a : ( 0 [,] 1 ) --> Y ) |
29 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
30 |
|
fvco3 |
|- ( ( a : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. a ) ` 0 ) = ( G ` ( a ` 0 ) ) ) |
31 |
28 29 30
|
sylancl |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( ( G o. a ) ` 0 ) = ( G ` ( a ` 0 ) ) ) |
32 |
9
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( F ` P ) = ( G ` O ) ) |
33 |
25 31 32
|
3eqtr4rd |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( F ` P ) = ( ( G o. a ) ` 0 ) ) |
34 |
1 17 18 22 23 33
|
cvmliftiota |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) /\ ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ) = ( G o. a ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 0 ) = P ) ) |
35 |
34
|
simp1d |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) ) |
36 |
26 1
|
cnf |
|- ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) |
37 |
35 36
|
syl |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) |
38 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
39 |
|
ffvelcdm |
|- ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B ) |
40 |
37 38 39
|
sylancl |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B ) |
41 |
|
simprrr |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( a ` 1 ) = X ) |
42 |
|
eqidd |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
43 |
|
fveq1 |
|- ( f = a -> ( f ` 0 ) = ( a ` 0 ) ) |
44 |
43
|
eqeq1d |
|- ( f = a -> ( ( f ` 0 ) = O <-> ( a ` 0 ) = O ) ) |
45 |
|
fveq1 |
|- ( f = a -> ( f ` 1 ) = ( a ` 1 ) ) |
46 |
45
|
eqeq1d |
|- ( f = a -> ( ( f ` 1 ) = X <-> ( a ` 1 ) = X ) ) |
47 |
|
coeq2 |
|- ( f = a -> ( G o. f ) = ( G o. a ) ) |
48 |
47
|
eqeq2d |
|- ( f = a -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. a ) ) ) |
49 |
48
|
anbi1d |
|- ( f = a -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ) |
50 |
49
|
riotabidv |
|- ( f = a -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ) |
51 |
50
|
fveq1d |
|- ( f = a -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
52 |
51
|
eqeq1d |
|- ( f = a -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
53 |
44 46 52
|
3anbi123d |
|- ( f = a -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) <-> ( ( a ` 0 ) = O /\ ( a ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) ) |
54 |
53
|
rspcev |
|- ( ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
55 |
19 24 41 42 54
|
syl13anc |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
56 |
3
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> F e. ( C CovMap J ) ) |
57 |
4
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> K e. SConn ) |
58 |
5
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> K e. N-Locally PConn ) |
59 |
6
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> O e. Y ) |
60 |
7
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> G e. ( K Cn J ) ) |
61 |
8
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> P e. B ) |
62 |
9
|
ad4antr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( F ` P ) = ( G ` O ) ) |
63 |
19
|
ad2antrr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> a e. ( II Cn K ) ) |
64 |
24
|
ad2antrr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( a ` 0 ) = O ) |
65 |
|
simprl |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> h e. ( II Cn K ) ) |
66 |
|
simprr1 |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( h ` 0 ) = O ) |
67 |
41
|
ad2antrr |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( a ` 1 ) = X ) |
68 |
|
simprr2 |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( h ` 1 ) = X ) |
69 |
67 68
|
eqtr4d |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( a ` 1 ) = ( h ` 1 ) ) |
70 |
1 2 56 57 58 59 60 61 62 63 64 65 66 69
|
cvmlift3lem1 |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
71 |
|
simprr3 |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) |
72 |
70 71
|
eqtrd |
|- ( ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) /\ ( h e. ( II Cn K ) /\ ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) |
73 |
72
|
rexlimdvaa |
|- ( ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) /\ w e. B ) -> ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) |
74 |
73
|
ralrimiva |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) |
75 |
|
eqeq2 |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) |
76 |
75
|
3anbi3d |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) ) |
77 |
76
|
rexbidv |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) ) ) |
78 |
|
eqeq1 |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( z = w <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) |
79 |
78
|
imbi2d |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> z = w ) <-> ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) |
80 |
79
|
ralbidv |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> z = w ) <-> A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) |
81 |
77 80
|
anbi12d |
|- ( z = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) -> ( ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) /\ A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> z = w ) ) <-> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) /\ A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) ) |
82 |
81
|
rspcev |
|- ( ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B /\ ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) /\ A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. a ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) -> E. z e. B ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) /\ A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> z = w ) ) ) |
83 |
40 55 74 82
|
syl12anc |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> E. z e. B ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) /\ A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> z = w ) ) ) |
84 |
|
fveq1 |
|- ( f = h -> ( f ` 0 ) = ( h ` 0 ) ) |
85 |
84
|
eqeq1d |
|- ( f = h -> ( ( f ` 0 ) = O <-> ( h ` 0 ) = O ) ) |
86 |
|
fveq1 |
|- ( f = h -> ( f ` 1 ) = ( h ` 1 ) ) |
87 |
86
|
eqeq1d |
|- ( f = h -> ( ( f ` 1 ) = X <-> ( h ` 1 ) = X ) ) |
88 |
|
coeq2 |
|- ( f = h -> ( G o. f ) = ( G o. h ) ) |
89 |
88
|
eqeq2d |
|- ( f = h -> ( ( F o. g ) = ( G o. f ) <-> ( F o. g ) = ( G o. h ) ) ) |
90 |
89
|
anbi1d |
|- ( f = h -> ( ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) <-> ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) |
91 |
90
|
riotabidv |
|- ( f = h -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ) |
92 |
91
|
fveq1d |
|- ( f = h -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) ) |
93 |
92
|
eqeq1d |
|- ( f = h -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) |
94 |
85 87 93
|
3anbi123d |
|- ( f = h -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
95 |
94
|
cbvrexvw |
|- ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) |
96 |
|
eqeq2 |
|- ( z = w -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) |
97 |
96
|
3anbi3d |
|- ( z = w -> ( ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) |
98 |
97
|
rexbidv |
|- ( z = w -> ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) |
99 |
95 98
|
bitrid |
|- ( z = w -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) ) ) |
100 |
99
|
reu8 |
|- ( E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. z e. B ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) /\ A. w e. B ( E. h e. ( II Cn K ) ( ( h ` 0 ) = O /\ ( h ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. h ) /\ ( g ` 0 ) = P ) ) ` 1 ) = w ) -> z = w ) ) ) |
101 |
83 100
|
sylibr |
|- ( ( ( ph /\ X e. Y ) /\ ( a e. ( II Cn K ) /\ ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) ) ) -> E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) |
102 |
101
|
rexlimdvaa |
|- ( ( ph /\ X e. Y ) -> ( E. a e. ( II Cn K ) ( ( a ` 0 ) = O /\ ( a ` 1 ) = X ) -> E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
103 |
16 102
|
mpd |
|- ( ( ph /\ X e. Y ) -> E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) |