| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftpht.b |  |-  B = U. C | 
						
							| 2 |  | cvmliftpht.m |  |-  M = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 3 |  | cvmliftpht.n |  |-  N = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) | 
						
							| 4 |  | cvmliftpht.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftpht.p |  |-  ( ph -> P e. B ) | 
						
							| 6 |  | cvmliftpht.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 7 |  | cvmliftpht.g |  |-  ( ph -> G ( ~=ph ` J ) H ) | 
						
							| 8 |  | isphtpc |  |-  ( G ( ~=ph ` J ) H <-> ( G e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( G ( PHtpy ` J ) H ) =/= (/) ) ) | 
						
							| 9 | 7 8 | sylib |  |-  ( ph -> ( G e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( G ( PHtpy ` J ) H ) =/= (/) ) ) | 
						
							| 10 | 9 | simp1d |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 11 | 1 2 4 10 5 6 | cvmliftiota |  |-  ( ph -> ( M e. ( II Cn C ) /\ ( F o. M ) = G /\ ( M ` 0 ) = P ) ) | 
						
							| 12 | 11 | simp1d |  |-  ( ph -> M e. ( II Cn C ) ) | 
						
							| 13 | 9 | simp2d |  |-  ( ph -> H e. ( II Cn J ) ) | 
						
							| 14 |  | phtpc01 |  |-  ( G ( ~=ph ` J ) H -> ( ( G ` 0 ) = ( H ` 0 ) /\ ( G ` 1 ) = ( H ` 1 ) ) ) | 
						
							| 15 | 7 14 | syl |  |-  ( ph -> ( ( G ` 0 ) = ( H ` 0 ) /\ ( G ` 1 ) = ( H ` 1 ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> ( G ` 0 ) = ( H ` 0 ) ) | 
						
							| 17 | 6 16 | eqtrd |  |-  ( ph -> ( F ` P ) = ( H ` 0 ) ) | 
						
							| 18 | 1 3 4 13 5 17 | cvmliftiota |  |-  ( ph -> ( N e. ( II Cn C ) /\ ( F o. N ) = H /\ ( N ` 0 ) = P ) ) | 
						
							| 19 | 18 | simp1d |  |-  ( ph -> N e. ( II Cn C ) ) | 
						
							| 20 | 9 | simp3d |  |-  ( ph -> ( G ( PHtpy ` J ) H ) =/= (/) ) | 
						
							| 21 |  | n0 |  |-  ( ( G ( PHtpy ` J ) H ) =/= (/) <-> E. g g e. ( G ( PHtpy ` J ) H ) ) | 
						
							| 22 | 20 21 | sylib |  |-  ( ph -> E. g g e. ( G ( PHtpy ` J ) H ) ) | 
						
							| 23 | 4 | adantr |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> F e. ( C CovMap J ) ) | 
						
							| 24 | 10 13 | phtpycn |  |-  ( ph -> ( G ( PHtpy ` J ) H ) C_ ( ( II tX II ) Cn J ) ) | 
						
							| 25 | 24 | sselda |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> g e. ( ( II tX II ) Cn J ) ) | 
						
							| 26 | 5 | adantr |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> P e. B ) | 
						
							| 27 | 6 | adantr |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 28 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 29 | 10 | adantr |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> G e. ( II Cn J ) ) | 
						
							| 30 | 13 | adantr |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> H e. ( II Cn J ) ) | 
						
							| 31 |  | simpr |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> g e. ( G ( PHtpy ` J ) H ) ) | 
						
							| 32 | 29 30 31 | phtpyi |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( 0 g 0 ) = ( G ` 0 ) /\ ( 1 g 0 ) = ( G ` 1 ) ) ) | 
						
							| 33 | 28 32 | mpan2 |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( ( 0 g 0 ) = ( G ` 0 ) /\ ( 1 g 0 ) = ( G ` 1 ) ) ) | 
						
							| 34 | 33 | simpld |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( 0 g 0 ) = ( G ` 0 ) ) | 
						
							| 35 | 27 34 | eqtr4d |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( F ` P ) = ( 0 g 0 ) ) | 
						
							| 36 | 1 23 25 26 35 | cvmlift2 |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> E! h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) | 
						
							| 37 |  | reurex |  |-  ( E! h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) -> E. h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> E. h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) | 
						
							| 39 | 4 | ad2antrr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> F e. ( C CovMap J ) ) | 
						
							| 40 | 5 | ad2antrr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> P e. B ) | 
						
							| 41 | 6 | ad2antrr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 42 | 10 | ad2antrr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> G e. ( II Cn J ) ) | 
						
							| 43 | 13 | ad2antrr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> H e. ( II Cn J ) ) | 
						
							| 44 |  | simplr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> g e. ( G ( PHtpy ` J ) H ) ) | 
						
							| 45 |  | simprl |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> h e. ( ( II tX II ) Cn C ) ) | 
						
							| 46 |  | simprrl |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( F o. h ) = g ) | 
						
							| 47 |  | simprrr |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( 0 h 0 ) = P ) | 
						
							| 48 | 1 2 3 39 40 41 42 43 44 45 46 47 | cvmliftphtlem |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> h e. ( M ( PHtpy ` C ) N ) ) | 
						
							| 49 | 48 | ne0d |  |-  ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( M ( PHtpy ` C ) N ) =/= (/) ) | 
						
							| 50 | 38 49 | rexlimddv |  |-  ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( M ( PHtpy ` C ) N ) =/= (/) ) | 
						
							| 51 | 22 50 | exlimddv |  |-  ( ph -> ( M ( PHtpy ` C ) N ) =/= (/) ) | 
						
							| 52 |  | isphtpc |  |-  ( M ( ~=ph ` C ) N <-> ( M e. ( II Cn C ) /\ N e. ( II Cn C ) /\ ( M ( PHtpy ` C ) N ) =/= (/) ) ) | 
						
							| 53 | 12 19 51 52 | syl3anbrc |  |-  ( ph -> M ( ~=ph ` C ) N ) |