| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftpht.b |
|- B = U. C |
| 2 |
|
cvmliftpht.m |
|- M = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |
| 3 |
|
cvmliftpht.n |
|- N = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) |
| 4 |
|
cvmliftpht.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftpht.p |
|- ( ph -> P e. B ) |
| 6 |
|
cvmliftpht.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 7 |
|
cvmliftpht.g |
|- ( ph -> G ( ~=ph ` J ) H ) |
| 8 |
|
isphtpc |
|- ( G ( ~=ph ` J ) H <-> ( G e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( G ( PHtpy ` J ) H ) =/= (/) ) ) |
| 9 |
7 8
|
sylib |
|- ( ph -> ( G e. ( II Cn J ) /\ H e. ( II Cn J ) /\ ( G ( PHtpy ` J ) H ) =/= (/) ) ) |
| 10 |
9
|
simp1d |
|- ( ph -> G e. ( II Cn J ) ) |
| 11 |
1 2 4 10 5 6
|
cvmliftiota |
|- ( ph -> ( M e. ( II Cn C ) /\ ( F o. M ) = G /\ ( M ` 0 ) = P ) ) |
| 12 |
11
|
simp1d |
|- ( ph -> M e. ( II Cn C ) ) |
| 13 |
9
|
simp2d |
|- ( ph -> H e. ( II Cn J ) ) |
| 14 |
|
phtpc01 |
|- ( G ( ~=ph ` J ) H -> ( ( G ` 0 ) = ( H ` 0 ) /\ ( G ` 1 ) = ( H ` 1 ) ) ) |
| 15 |
7 14
|
syl |
|- ( ph -> ( ( G ` 0 ) = ( H ` 0 ) /\ ( G ` 1 ) = ( H ` 1 ) ) ) |
| 16 |
15
|
simpld |
|- ( ph -> ( G ` 0 ) = ( H ` 0 ) ) |
| 17 |
6 16
|
eqtrd |
|- ( ph -> ( F ` P ) = ( H ` 0 ) ) |
| 18 |
1 3 4 13 5 17
|
cvmliftiota |
|- ( ph -> ( N e. ( II Cn C ) /\ ( F o. N ) = H /\ ( N ` 0 ) = P ) ) |
| 19 |
18
|
simp1d |
|- ( ph -> N e. ( II Cn C ) ) |
| 20 |
9
|
simp3d |
|- ( ph -> ( G ( PHtpy ` J ) H ) =/= (/) ) |
| 21 |
|
n0 |
|- ( ( G ( PHtpy ` J ) H ) =/= (/) <-> E. g g e. ( G ( PHtpy ` J ) H ) ) |
| 22 |
20 21
|
sylib |
|- ( ph -> E. g g e. ( G ( PHtpy ` J ) H ) ) |
| 23 |
4
|
adantr |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> F e. ( C CovMap J ) ) |
| 24 |
10 13
|
phtpycn |
|- ( ph -> ( G ( PHtpy ` J ) H ) C_ ( ( II tX II ) Cn J ) ) |
| 25 |
24
|
sselda |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> g e. ( ( II tX II ) Cn J ) ) |
| 26 |
5
|
adantr |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> P e. B ) |
| 27 |
6
|
adantr |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( F ` P ) = ( G ` 0 ) ) |
| 28 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
| 29 |
10
|
adantr |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> G e. ( II Cn J ) ) |
| 30 |
13
|
adantr |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> H e. ( II Cn J ) ) |
| 31 |
|
simpr |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> g e. ( G ( PHtpy ` J ) H ) ) |
| 32 |
29 30 31
|
phtpyi |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ 0 e. ( 0 [,] 1 ) ) -> ( ( 0 g 0 ) = ( G ` 0 ) /\ ( 1 g 0 ) = ( G ` 1 ) ) ) |
| 33 |
28 32
|
mpan2 |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( ( 0 g 0 ) = ( G ` 0 ) /\ ( 1 g 0 ) = ( G ` 1 ) ) ) |
| 34 |
33
|
simpld |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( 0 g 0 ) = ( G ` 0 ) ) |
| 35 |
27 34
|
eqtr4d |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( F ` P ) = ( 0 g 0 ) ) |
| 36 |
1 23 25 26 35
|
cvmlift2 |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> E! h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) |
| 37 |
|
reurex |
|- ( E! h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) -> E. h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) |
| 38 |
36 37
|
syl |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> E. h e. ( ( II tX II ) Cn C ) ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) |
| 39 |
4
|
ad2antrr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> F e. ( C CovMap J ) ) |
| 40 |
5
|
ad2antrr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> P e. B ) |
| 41 |
6
|
ad2antrr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( F ` P ) = ( G ` 0 ) ) |
| 42 |
10
|
ad2antrr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> G e. ( II Cn J ) ) |
| 43 |
13
|
ad2antrr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> H e. ( II Cn J ) ) |
| 44 |
|
simplr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> g e. ( G ( PHtpy ` J ) H ) ) |
| 45 |
|
simprl |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> h e. ( ( II tX II ) Cn C ) ) |
| 46 |
|
simprrl |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( F o. h ) = g ) |
| 47 |
|
simprrr |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( 0 h 0 ) = P ) |
| 48 |
1 2 3 39 40 41 42 43 44 45 46 47
|
cvmliftphtlem |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> h e. ( M ( PHtpy ` C ) N ) ) |
| 49 |
48
|
ne0d |
|- ( ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) /\ ( h e. ( ( II tX II ) Cn C ) /\ ( ( F o. h ) = g /\ ( 0 h 0 ) = P ) ) ) -> ( M ( PHtpy ` C ) N ) =/= (/) ) |
| 50 |
38 49
|
rexlimddv |
|- ( ( ph /\ g e. ( G ( PHtpy ` J ) H ) ) -> ( M ( PHtpy ` C ) N ) =/= (/) ) |
| 51 |
22 50
|
exlimddv |
|- ( ph -> ( M ( PHtpy ` C ) N ) =/= (/) ) |
| 52 |
|
isphtpc |
|- ( M ( ~=ph ` C ) N <-> ( M e. ( II Cn C ) /\ N e. ( II Cn C ) /\ ( M ( PHtpy ` C ) N ) =/= (/) ) ) |
| 53 |
12 19 51 52
|
syl3anbrc |
|- ( ph -> M ( ~=ph ` C ) N ) |