| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftpht.b |  |-  B = U. C | 
						
							| 2 |  | cvmliftpht.m |  |-  M = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 3 |  | cvmliftpht.n |  |-  N = ( iota_ f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) | 
						
							| 4 |  | cvmliftpht.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftpht.p |  |-  ( ph -> P e. B ) | 
						
							| 6 |  | cvmliftpht.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 7 |  | cvmliftphtlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 8 |  | cvmliftphtlem.h |  |-  ( ph -> H e. ( II Cn J ) ) | 
						
							| 9 |  | cvmliftphtlem.k |  |-  ( ph -> K e. ( G ( PHtpy ` J ) H ) ) | 
						
							| 10 |  | cvmliftphtlem.a |  |-  ( ph -> A e. ( ( II tX II ) Cn C ) ) | 
						
							| 11 |  | cvmliftphtlem.c |  |-  ( ph -> ( F o. A ) = K ) | 
						
							| 12 |  | cvmliftphtlem.0 |  |-  ( ph -> ( 0 A 0 ) = P ) | 
						
							| 13 | 1 2 4 7 5 6 | cvmliftiota |  |-  ( ph -> ( M e. ( II Cn C ) /\ ( F o. M ) = G /\ ( M ` 0 ) = P ) ) | 
						
							| 14 | 13 | simp1d |  |-  ( ph -> M e. ( II Cn C ) ) | 
						
							| 15 | 7 8 9 | phtpy01 |  |-  ( ph -> ( ( G ` 0 ) = ( H ` 0 ) /\ ( G ` 1 ) = ( H ` 1 ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> ( G ` 0 ) = ( H ` 0 ) ) | 
						
							| 17 | 6 16 | eqtrd |  |-  ( ph -> ( F ` P ) = ( H ` 0 ) ) | 
						
							| 18 | 1 3 4 8 5 17 | cvmliftiota |  |-  ( ph -> ( N e. ( II Cn C ) /\ ( F o. N ) = H /\ ( N ` 0 ) = P ) ) | 
						
							| 19 | 18 | simp1d |  |-  ( ph -> N e. ( II Cn C ) ) | 
						
							| 20 |  | iitop |  |-  II e. Top | 
						
							| 21 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 22 | 20 20 21 21 | txunii |  |-  ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) = U. ( II tX II ) | 
						
							| 23 | 22 1 | cnf |  |-  ( A e. ( ( II tX II ) Cn C ) -> A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 24 | 10 23 | syl |  |-  ( ph -> A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B ) | 
						
							| 25 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 26 |  | opelxpi |  |-  ( ( s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> <. s , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 27 | 25 26 | mpan2 |  |-  ( s e. ( 0 [,] 1 ) -> <. s , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 28 |  | fvco3 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ <. s , 0 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( F o. A ) ` <. s , 0 >. ) = ( F ` ( A ` <. s , 0 >. ) ) ) | 
						
							| 29 | 24 27 28 | syl2an |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. s , 0 >. ) = ( F ` ( A ` <. s , 0 >. ) ) ) | 
						
							| 30 | 11 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F o. A ) = K ) | 
						
							| 31 | 30 | fveq1d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. s , 0 >. ) = ( K ` <. s , 0 >. ) ) | 
						
							| 32 | 29 31 | eqtr3d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( A ` <. s , 0 >. ) ) = ( K ` <. s , 0 >. ) ) | 
						
							| 33 |  | df-ov |  |-  ( s A 0 ) = ( A ` <. s , 0 >. ) | 
						
							| 34 | 33 | fveq2i |  |-  ( F ` ( s A 0 ) ) = ( F ` ( A ` <. s , 0 >. ) ) | 
						
							| 35 |  | df-ov |  |-  ( s K 0 ) = ( K ` <. s , 0 >. ) | 
						
							| 36 | 32 34 35 | 3eqtr4g |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( s A 0 ) ) = ( s K 0 ) ) | 
						
							| 37 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 38 | 37 | a1i |  |-  ( ph -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 39 | 7 8 | phtpyhtpy |  |-  ( ph -> ( G ( PHtpy ` J ) H ) C_ ( G ( II Htpy J ) H ) ) | 
						
							| 40 | 39 9 | sseldd |  |-  ( ph -> K e. ( G ( II Htpy J ) H ) ) | 
						
							| 41 | 38 7 8 40 | htpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( s K 0 ) = ( G ` s ) /\ ( s K 1 ) = ( H ` s ) ) ) | 
						
							| 42 | 41 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s K 0 ) = ( G ` s ) ) | 
						
							| 43 | 36 42 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( s A 0 ) ) = ( G ` s ) ) | 
						
							| 44 | 43 | mpteq2dva |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( F ` ( s A 0 ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( G ` s ) ) ) | 
						
							| 45 |  | fovcdm |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ s e. ( 0 [,] 1 ) /\ 0 e. ( 0 [,] 1 ) ) -> ( s A 0 ) e. B ) | 
						
							| 46 | 25 45 | mp3an3 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ s e. ( 0 [,] 1 ) ) -> ( s A 0 ) e. B ) | 
						
							| 47 | 24 46 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s A 0 ) e. B ) | 
						
							| 48 |  | eqidd |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) | 
						
							| 49 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 50 | 4 49 | syl |  |-  ( ph -> F e. ( C Cn J ) ) | 
						
							| 51 |  | eqid |  |-  U. J = U. J | 
						
							| 52 | 1 51 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> U. J ) | 
						
							| 53 | 50 52 | syl |  |-  ( ph -> F : B --> U. J ) | 
						
							| 54 | 53 | feqmptd |  |-  ( ph -> F = ( x e. B |-> ( F ` x ) ) ) | 
						
							| 55 |  | fveq2 |  |-  ( x = ( s A 0 ) -> ( F ` x ) = ( F ` ( s A 0 ) ) ) | 
						
							| 56 | 47 48 54 55 | fmptco |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( s A 0 ) ) ) ) | 
						
							| 57 | 21 51 | cnf |  |-  ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> U. J ) | 
						
							| 58 | 7 57 | syl |  |-  ( ph -> G : ( 0 [,] 1 ) --> U. J ) | 
						
							| 59 | 58 | feqmptd |  |-  ( ph -> G = ( s e. ( 0 [,] 1 ) |-> ( G ` s ) ) ) | 
						
							| 60 | 44 56 59 | 3eqtr4d |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) = G ) | 
						
							| 61 | 38 | cnmptid |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> s ) e. ( II Cn II ) ) | 
						
							| 62 | 25 | a1i |  |-  ( ph -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 63 | 38 38 62 | cnmptc |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> 0 ) e. ( II Cn II ) ) | 
						
							| 64 | 38 61 63 10 | cnmpt12f |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) e. ( II Cn C ) ) | 
						
							| 65 | 1 | cvmlift |  |-  ( ( ( F e. ( C CovMap J ) /\ G e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( G ` 0 ) ) ) -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 66 | 4 7 5 6 65 | syl22anc |  |-  ( ph -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 67 |  | coeq2 |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) -> ( F o. f ) = ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) ) | 
						
							| 68 | 67 | eqeq1d |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) -> ( ( F o. f ) = G <-> ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) = G ) ) | 
						
							| 69 |  | fveq1 |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) -> ( f ` 0 ) = ( ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ` 0 ) ) | 
						
							| 70 |  | oveq1 |  |-  ( s = 0 -> ( s A 0 ) = ( 0 A 0 ) ) | 
						
							| 71 |  | eqid |  |-  ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) | 
						
							| 72 |  | ovex |  |-  ( 0 A 0 ) e. _V | 
						
							| 73 | 70 71 72 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ` 0 ) = ( 0 A 0 ) ) | 
						
							| 74 | 25 73 | ax-mp |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ` 0 ) = ( 0 A 0 ) | 
						
							| 75 | 69 74 | eqtrdi |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) -> ( f ` 0 ) = ( 0 A 0 ) ) | 
						
							| 76 | 75 | eqeq1d |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) -> ( ( f ` 0 ) = P <-> ( 0 A 0 ) = P ) ) | 
						
							| 77 | 68 76 | anbi12d |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) -> ( ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) = G /\ ( 0 A 0 ) = P ) ) ) | 
						
							| 78 | 77 | riota2 |  |-  ( ( ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) e. ( II Cn C ) /\ E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) -> ( ( ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) = G /\ ( 0 A 0 ) = P ) <-> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) ) | 
						
							| 79 | 64 66 78 | syl2anc |  |-  ( ph -> ( ( ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) = G /\ ( 0 A 0 ) = P ) <-> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) ) | 
						
							| 80 | 60 12 79 | mpbi2and |  |-  ( ph -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) | 
						
							| 81 | 2 80 | eqtrid |  |-  ( ph -> M = ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) ) | 
						
							| 82 | 21 1 | cnf |  |-  ( M e. ( II Cn C ) -> M : ( 0 [,] 1 ) --> B ) | 
						
							| 83 | 14 82 | syl |  |-  ( ph -> M : ( 0 [,] 1 ) --> B ) | 
						
							| 84 | 83 | feqmptd |  |-  ( ph -> M = ( s e. ( 0 [,] 1 ) |-> ( M ` s ) ) ) | 
						
							| 85 | 81 84 | eqtr3d |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` s ) ) ) | 
						
							| 86 |  | mpteqb |  |-  ( A. s e. ( 0 [,] 1 ) ( s A 0 ) e. _V -> ( ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` s ) ) <-> A. s e. ( 0 [,] 1 ) ( s A 0 ) = ( M ` s ) ) ) | 
						
							| 87 |  | ovexd |  |-  ( s e. ( 0 [,] 1 ) -> ( s A 0 ) e. _V ) | 
						
							| 88 | 86 87 | mprg |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( s A 0 ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` s ) ) <-> A. s e. ( 0 [,] 1 ) ( s A 0 ) = ( M ` s ) ) | 
						
							| 89 | 85 88 | sylib |  |-  ( ph -> A. s e. ( 0 [,] 1 ) ( s A 0 ) = ( M ` s ) ) | 
						
							| 90 | 89 | r19.21bi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s A 0 ) = ( M ` s ) ) | 
						
							| 91 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 92 |  | opelxpi |  |-  ( ( s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> <. s , 1 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 93 | 91 92 | mpan2 |  |-  ( s e. ( 0 [,] 1 ) -> <. s , 1 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 94 |  | fvco3 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ <. s , 1 >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( F o. A ) ` <. s , 1 >. ) = ( F ` ( A ` <. s , 1 >. ) ) ) | 
						
							| 95 | 24 93 94 | syl2an |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. s , 1 >. ) = ( F ` ( A ` <. s , 1 >. ) ) ) | 
						
							| 96 | 30 | fveq1d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. s , 1 >. ) = ( K ` <. s , 1 >. ) ) | 
						
							| 97 | 95 96 | eqtr3d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( A ` <. s , 1 >. ) ) = ( K ` <. s , 1 >. ) ) | 
						
							| 98 |  | df-ov |  |-  ( s A 1 ) = ( A ` <. s , 1 >. ) | 
						
							| 99 | 98 | fveq2i |  |-  ( F ` ( s A 1 ) ) = ( F ` ( A ` <. s , 1 >. ) ) | 
						
							| 100 |  | df-ov |  |-  ( s K 1 ) = ( K ` <. s , 1 >. ) | 
						
							| 101 | 97 99 100 | 3eqtr4g |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( s A 1 ) ) = ( s K 1 ) ) | 
						
							| 102 | 41 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s K 1 ) = ( H ` s ) ) | 
						
							| 103 | 101 102 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( s A 1 ) ) = ( H ` s ) ) | 
						
							| 104 | 103 | mpteq2dva |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( F ` ( s A 1 ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( H ` s ) ) ) | 
						
							| 105 |  | fovcdm |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ s e. ( 0 [,] 1 ) /\ 1 e. ( 0 [,] 1 ) ) -> ( s A 1 ) e. B ) | 
						
							| 106 | 91 105 | mp3an3 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ s e. ( 0 [,] 1 ) ) -> ( s A 1 ) e. B ) | 
						
							| 107 | 24 106 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s A 1 ) e. B ) | 
						
							| 108 |  | eqidd |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) | 
						
							| 109 |  | fveq2 |  |-  ( x = ( s A 1 ) -> ( F ` x ) = ( F ` ( s A 1 ) ) ) | 
						
							| 110 | 107 108 54 109 | fmptco |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( s A 1 ) ) ) ) | 
						
							| 111 | 21 51 | cnf |  |-  ( H e. ( II Cn J ) -> H : ( 0 [,] 1 ) --> U. J ) | 
						
							| 112 | 8 111 | syl |  |-  ( ph -> H : ( 0 [,] 1 ) --> U. J ) | 
						
							| 113 | 112 | feqmptd |  |-  ( ph -> H = ( s e. ( 0 [,] 1 ) |-> ( H ` s ) ) ) | 
						
							| 114 | 104 110 113 | 3eqtr4d |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) = H ) | 
						
							| 115 |  | iiconn |  |-  II e. Conn | 
						
							| 116 | 115 | a1i |  |-  ( ph -> II e. Conn ) | 
						
							| 117 |  | iinllyconn |  |-  II e. N-Locally Conn | 
						
							| 118 | 117 | a1i |  |-  ( ph -> II e. N-Locally Conn ) | 
						
							| 119 | 38 63 61 10 | cnmpt12f |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) e. ( II Cn C ) ) | 
						
							| 120 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 121 | 4 120 | syl |  |-  ( ph -> C e. Top ) | 
						
							| 122 | 1 | toptopon |  |-  ( C e. Top <-> C e. ( TopOn ` B ) ) | 
						
							| 123 | 121 122 | sylib |  |-  ( ph -> C e. ( TopOn ` B ) ) | 
						
							| 124 |  | ffvelcdm |  |-  ( ( M : ( 0 [,] 1 ) --> B /\ 0 e. ( 0 [,] 1 ) ) -> ( M ` 0 ) e. B ) | 
						
							| 125 | 83 25 124 | sylancl |  |-  ( ph -> ( M ` 0 ) e. B ) | 
						
							| 126 |  | cnconst2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ C e. ( TopOn ` B ) /\ ( M ` 0 ) e. B ) -> ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) e. ( II Cn C ) ) | 
						
							| 127 | 38 123 125 126 | syl3anc |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) e. ( II Cn C ) ) | 
						
							| 128 | 7 8 9 | phtpyi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( 0 K s ) = ( G ` 0 ) /\ ( 1 K s ) = ( G ` 1 ) ) ) | 
						
							| 129 | 128 | simpld |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 K s ) = ( G ` 0 ) ) | 
						
							| 130 |  | opelxpi |  |-  ( ( 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 131 | 25 130 | mpan |  |-  ( s e. ( 0 [,] 1 ) -> <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 132 |  | fvco3 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ <. 0 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( F o. A ) ` <. 0 , s >. ) = ( F ` ( A ` <. 0 , s >. ) ) ) | 
						
							| 133 | 24 131 132 | syl2an |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. 0 , s >. ) = ( F ` ( A ` <. 0 , s >. ) ) ) | 
						
							| 134 | 30 | fveq1d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. 0 , s >. ) = ( K ` <. 0 , s >. ) ) | 
						
							| 135 | 133 134 | eqtr3d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( A ` <. 0 , s >. ) ) = ( K ` <. 0 , s >. ) ) | 
						
							| 136 |  | df-ov |  |-  ( 0 A s ) = ( A ` <. 0 , s >. ) | 
						
							| 137 | 136 | fveq2i |  |-  ( F ` ( 0 A s ) ) = ( F ` ( A ` <. 0 , s >. ) ) | 
						
							| 138 |  | df-ov |  |-  ( 0 K s ) = ( K ` <. 0 , s >. ) | 
						
							| 139 | 135 137 138 | 3eqtr4g |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( 0 A s ) ) = ( 0 K s ) ) | 
						
							| 140 | 13 | simp3d |  |-  ( ph -> ( M ` 0 ) = P ) | 
						
							| 141 | 140 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( M ` 0 ) = P ) | 
						
							| 142 | 141 | fveq2d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( M ` 0 ) ) = ( F ` P ) ) | 
						
							| 143 | 6 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 144 | 142 143 | eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( M ` 0 ) ) = ( G ` 0 ) ) | 
						
							| 145 | 129 139 144 | 3eqtr4d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( 0 A s ) ) = ( F ` ( M ` 0 ) ) ) | 
						
							| 146 | 145 | mpteq2dva |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( F ` ( 0 A s ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( M ` 0 ) ) ) ) | 
						
							| 147 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( F ` ( M ` 0 ) ) } ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( M ` 0 ) ) ) | 
						
							| 148 | 146 147 | eqtr4di |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( F ` ( 0 A s ) ) ) = ( ( 0 [,] 1 ) X. { ( F ` ( M ` 0 ) ) } ) ) | 
						
							| 149 |  | fovcdm |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ 0 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 0 A s ) e. B ) | 
						
							| 150 | 25 149 | mp3an2 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ s e. ( 0 [,] 1 ) ) -> ( 0 A s ) e. B ) | 
						
							| 151 | 24 150 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 A s ) e. B ) | 
						
							| 152 |  | eqidd |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) ) | 
						
							| 153 |  | fveq2 |  |-  ( x = ( 0 A s ) -> ( F ` x ) = ( F ` ( 0 A s ) ) ) | 
						
							| 154 | 151 152 54 153 | fmptco |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( 0 A s ) ) ) ) | 
						
							| 155 | 53 | ffnd |  |-  ( ph -> F Fn B ) | 
						
							| 156 |  | fcoconst |  |-  ( ( F Fn B /\ ( M ` 0 ) e. B ) -> ( F o. ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ) = ( ( 0 [,] 1 ) X. { ( F ` ( M ` 0 ) ) } ) ) | 
						
							| 157 | 155 125 156 | syl2anc |  |-  ( ph -> ( F o. ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ) = ( ( 0 [,] 1 ) X. { ( F ` ( M ` 0 ) ) } ) ) | 
						
							| 158 | 148 154 157 | 3eqtr4d |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) ) = ( F o. ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ) ) | 
						
							| 159 | 12 140 | eqtr4d |  |-  ( ph -> ( 0 A 0 ) = ( M ` 0 ) ) | 
						
							| 160 |  | oveq2 |  |-  ( s = 0 -> ( 0 A s ) = ( 0 A 0 ) ) | 
						
							| 161 |  | eqid |  |-  ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) | 
						
							| 162 | 160 161 72 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) ` 0 ) = ( 0 A 0 ) ) | 
						
							| 163 | 25 162 | ax-mp |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) ` 0 ) = ( 0 A 0 ) | 
						
							| 164 |  | fvex |  |-  ( M ` 0 ) e. _V | 
						
							| 165 | 164 | fvconst2 |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ` 0 ) = ( M ` 0 ) ) | 
						
							| 166 | 25 165 | ax-mp |  |-  ( ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ` 0 ) = ( M ` 0 ) | 
						
							| 167 | 159 163 166 | 3eqtr4g |  |-  ( ph -> ( ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) ` 0 ) = ( ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ` 0 ) ) | 
						
							| 168 | 1 21 4 116 118 62 119 127 158 167 | cvmliftmoi |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) = ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) ) | 
						
							| 169 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( M ` 0 ) } ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 0 ) ) | 
						
							| 170 | 168 169 | eqtrdi |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 0 ) ) ) | 
						
							| 171 |  | mpteqb |  |-  ( A. s e. ( 0 [,] 1 ) ( 0 A s ) e. _V -> ( ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 0 ) ) <-> A. s e. ( 0 [,] 1 ) ( 0 A s ) = ( M ` 0 ) ) ) | 
						
							| 172 |  | ovexd |  |-  ( s e. ( 0 [,] 1 ) -> ( 0 A s ) e. _V ) | 
						
							| 173 | 171 172 | mprg |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( 0 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 0 ) ) <-> A. s e. ( 0 [,] 1 ) ( 0 A s ) = ( M ` 0 ) ) | 
						
							| 174 | 170 173 | sylib |  |-  ( ph -> A. s e. ( 0 [,] 1 ) ( 0 A s ) = ( M ` 0 ) ) | 
						
							| 175 |  | oveq2 |  |-  ( s = 1 -> ( 0 A s ) = ( 0 A 1 ) ) | 
						
							| 176 | 175 | eqeq1d |  |-  ( s = 1 -> ( ( 0 A s ) = ( M ` 0 ) <-> ( 0 A 1 ) = ( M ` 0 ) ) ) | 
						
							| 177 | 176 | rspcv |  |-  ( 1 e. ( 0 [,] 1 ) -> ( A. s e. ( 0 [,] 1 ) ( 0 A s ) = ( M ` 0 ) -> ( 0 A 1 ) = ( M ` 0 ) ) ) | 
						
							| 178 | 91 174 177 | mpsyl |  |-  ( ph -> ( 0 A 1 ) = ( M ` 0 ) ) | 
						
							| 179 | 178 140 | eqtrd |  |-  ( ph -> ( 0 A 1 ) = P ) | 
						
							| 180 | 91 | a1i |  |-  ( ph -> 1 e. ( 0 [,] 1 ) ) | 
						
							| 181 | 38 38 180 | cnmptc |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> 1 ) e. ( II Cn II ) ) | 
						
							| 182 | 38 61 181 10 | cnmpt12f |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) e. ( II Cn C ) ) | 
						
							| 183 | 1 | cvmlift |  |-  ( ( ( F e. ( C CovMap J ) /\ H e. ( II Cn J ) ) /\ ( P e. B /\ ( F ` P ) = ( H ` 0 ) ) ) -> E! f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) | 
						
							| 184 | 4 8 5 17 183 | syl22anc |  |-  ( ph -> E! f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) | 
						
							| 185 |  | coeq2 |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) -> ( F o. f ) = ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) ) | 
						
							| 186 | 185 | eqeq1d |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) -> ( ( F o. f ) = H <-> ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) = H ) ) | 
						
							| 187 |  | fveq1 |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) -> ( f ` 0 ) = ( ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ` 0 ) ) | 
						
							| 188 |  | oveq1 |  |-  ( s = 0 -> ( s A 1 ) = ( 0 A 1 ) ) | 
						
							| 189 |  | eqid |  |-  ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) | 
						
							| 190 |  | ovex |  |-  ( 0 A 1 ) e. _V | 
						
							| 191 | 188 189 190 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ` 0 ) = ( 0 A 1 ) ) | 
						
							| 192 | 25 191 | ax-mp |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ` 0 ) = ( 0 A 1 ) | 
						
							| 193 | 187 192 | eqtrdi |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) -> ( f ` 0 ) = ( 0 A 1 ) ) | 
						
							| 194 | 193 | eqeq1d |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) -> ( ( f ` 0 ) = P <-> ( 0 A 1 ) = P ) ) | 
						
							| 195 | 186 194 | anbi12d |  |-  ( f = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) -> ( ( ( F o. f ) = H /\ ( f ` 0 ) = P ) <-> ( ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) = H /\ ( 0 A 1 ) = P ) ) ) | 
						
							| 196 | 195 | riota2 |  |-  ( ( ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) e. ( II Cn C ) /\ E! f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) -> ( ( ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) = H /\ ( 0 A 1 ) = P ) <-> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) ) | 
						
							| 197 | 182 184 196 | syl2anc |  |-  ( ph -> ( ( ( F o. ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) = H /\ ( 0 A 1 ) = P ) <-> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) ) | 
						
							| 198 | 114 179 197 | mpbi2and |  |-  ( ph -> ( iota_ f e. ( II Cn C ) ( ( F o. f ) = H /\ ( f ` 0 ) = P ) ) = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) | 
						
							| 199 | 3 198 | eqtrid |  |-  ( ph -> N = ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) ) | 
						
							| 200 | 21 1 | cnf |  |-  ( N e. ( II Cn C ) -> N : ( 0 [,] 1 ) --> B ) | 
						
							| 201 | 19 200 | syl |  |-  ( ph -> N : ( 0 [,] 1 ) --> B ) | 
						
							| 202 | 201 | feqmptd |  |-  ( ph -> N = ( s e. ( 0 [,] 1 ) |-> ( N ` s ) ) ) | 
						
							| 203 | 199 202 | eqtr3d |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) = ( s e. ( 0 [,] 1 ) |-> ( N ` s ) ) ) | 
						
							| 204 |  | mpteqb |  |-  ( A. s e. ( 0 [,] 1 ) ( s A 1 ) e. _V -> ( ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) = ( s e. ( 0 [,] 1 ) |-> ( N ` s ) ) <-> A. s e. ( 0 [,] 1 ) ( s A 1 ) = ( N ` s ) ) ) | 
						
							| 205 |  | ovexd |  |-  ( s e. ( 0 [,] 1 ) -> ( s A 1 ) e. _V ) | 
						
							| 206 | 204 205 | mprg |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( s A 1 ) ) = ( s e. ( 0 [,] 1 ) |-> ( N ` s ) ) <-> A. s e. ( 0 [,] 1 ) ( s A 1 ) = ( N ` s ) ) | 
						
							| 207 | 203 206 | sylib |  |-  ( ph -> A. s e. ( 0 [,] 1 ) ( s A 1 ) = ( N ` s ) ) | 
						
							| 208 | 207 | r19.21bi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( s A 1 ) = ( N ` s ) ) | 
						
							| 209 | 174 | r19.21bi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 0 A s ) = ( M ` 0 ) ) | 
						
							| 210 | 38 181 61 10 | cnmpt12f |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) e. ( II Cn C ) ) | 
						
							| 211 |  | ffvelcdm |  |-  ( ( M : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( M ` 1 ) e. B ) | 
						
							| 212 | 83 91 211 | sylancl |  |-  ( ph -> ( M ` 1 ) e. B ) | 
						
							| 213 |  | cnconst2 |  |-  ( ( II e. ( TopOn ` ( 0 [,] 1 ) ) /\ C e. ( TopOn ` B ) /\ ( M ` 1 ) e. B ) -> ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) e. ( II Cn C ) ) | 
						
							| 214 | 38 123 212 213 | syl3anc |  |-  ( ph -> ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) e. ( II Cn C ) ) | 
						
							| 215 |  | opelxpi |  |-  ( ( 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 216 | 91 215 | mpan |  |-  ( s e. ( 0 [,] 1 ) -> <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) | 
						
							| 217 |  | fvco3 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ <. 1 , s >. e. ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) ) -> ( ( F o. A ) ` <. 1 , s >. ) = ( F ` ( A ` <. 1 , s >. ) ) ) | 
						
							| 218 | 24 216 217 | syl2an |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. 1 , s >. ) = ( F ` ( A ` <. 1 , s >. ) ) ) | 
						
							| 219 | 30 | fveq1d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. A ) ` <. 1 , s >. ) = ( K ` <. 1 , s >. ) ) | 
						
							| 220 | 218 219 | eqtr3d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( A ` <. 1 , s >. ) ) = ( K ` <. 1 , s >. ) ) | 
						
							| 221 |  | df-ov |  |-  ( 1 A s ) = ( A ` <. 1 , s >. ) | 
						
							| 222 | 221 | fveq2i |  |-  ( F ` ( 1 A s ) ) = ( F ` ( A ` <. 1 , s >. ) ) | 
						
							| 223 |  | df-ov |  |-  ( 1 K s ) = ( K ` <. 1 , s >. ) | 
						
							| 224 | 220 222 223 | 3eqtr4g |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( 1 A s ) ) = ( 1 K s ) ) | 
						
							| 225 | 128 | simprd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 K s ) = ( G ` 1 ) ) | 
						
							| 226 | 13 | simp2d |  |-  ( ph -> ( F o. M ) = G ) | 
						
							| 227 | 226 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F o. M ) = G ) | 
						
							| 228 | 227 | fveq1d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. M ) ` 1 ) = ( G ` 1 ) ) | 
						
							| 229 | 83 | adantr |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> M : ( 0 [,] 1 ) --> B ) | 
						
							| 230 |  | fvco3 |  |-  ( ( M : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( F o. M ) ` 1 ) = ( F ` ( M ` 1 ) ) ) | 
						
							| 231 | 229 91 230 | sylancl |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( ( F o. M ) ` 1 ) = ( F ` ( M ` 1 ) ) ) | 
						
							| 232 | 228 231 | eqtr3d |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( G ` 1 ) = ( F ` ( M ` 1 ) ) ) | 
						
							| 233 | 224 225 232 | 3eqtrd |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( F ` ( 1 A s ) ) = ( F ` ( M ` 1 ) ) ) | 
						
							| 234 | 233 | mpteq2dva |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( F ` ( 1 A s ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( M ` 1 ) ) ) ) | 
						
							| 235 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( F ` ( M ` 1 ) ) } ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( M ` 1 ) ) ) | 
						
							| 236 | 234 235 | eqtr4di |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( F ` ( 1 A s ) ) ) = ( ( 0 [,] 1 ) X. { ( F ` ( M ` 1 ) ) } ) ) | 
						
							| 237 |  | fovcdm |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ 1 e. ( 0 [,] 1 ) /\ s e. ( 0 [,] 1 ) ) -> ( 1 A s ) e. B ) | 
						
							| 238 | 91 237 | mp3an2 |  |-  ( ( A : ( ( 0 [,] 1 ) X. ( 0 [,] 1 ) ) --> B /\ s e. ( 0 [,] 1 ) ) -> ( 1 A s ) e. B ) | 
						
							| 239 | 24 238 | sylan |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 A s ) e. B ) | 
						
							| 240 |  | eqidd |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) ) | 
						
							| 241 |  | fveq2 |  |-  ( x = ( 1 A s ) -> ( F ` x ) = ( F ` ( 1 A s ) ) ) | 
						
							| 242 | 239 240 54 241 | fmptco |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) ) = ( s e. ( 0 [,] 1 ) |-> ( F ` ( 1 A s ) ) ) ) | 
						
							| 243 |  | fcoconst |  |-  ( ( F Fn B /\ ( M ` 1 ) e. B ) -> ( F o. ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ) = ( ( 0 [,] 1 ) X. { ( F ` ( M ` 1 ) ) } ) ) | 
						
							| 244 | 155 212 243 | syl2anc |  |-  ( ph -> ( F o. ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ) = ( ( 0 [,] 1 ) X. { ( F ` ( M ` 1 ) ) } ) ) | 
						
							| 245 | 236 242 244 | 3eqtr4d |  |-  ( ph -> ( F o. ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) ) = ( F o. ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ) ) | 
						
							| 246 |  | oveq1 |  |-  ( s = 1 -> ( s A 0 ) = ( 1 A 0 ) ) | 
						
							| 247 |  | fveq2 |  |-  ( s = 1 -> ( M ` s ) = ( M ` 1 ) ) | 
						
							| 248 | 246 247 | eqeq12d |  |-  ( s = 1 -> ( ( s A 0 ) = ( M ` s ) <-> ( 1 A 0 ) = ( M ` 1 ) ) ) | 
						
							| 249 | 248 | rspcv |  |-  ( 1 e. ( 0 [,] 1 ) -> ( A. s e. ( 0 [,] 1 ) ( s A 0 ) = ( M ` s ) -> ( 1 A 0 ) = ( M ` 1 ) ) ) | 
						
							| 250 | 91 89 249 | mpsyl |  |-  ( ph -> ( 1 A 0 ) = ( M ` 1 ) ) | 
						
							| 251 |  | oveq2 |  |-  ( s = 0 -> ( 1 A s ) = ( 1 A 0 ) ) | 
						
							| 252 |  | eqid |  |-  ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) | 
						
							| 253 |  | ovex |  |-  ( 1 A 0 ) e. _V | 
						
							| 254 | 251 252 253 | fvmpt |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) ` 0 ) = ( 1 A 0 ) ) | 
						
							| 255 | 25 254 | ax-mp |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) ` 0 ) = ( 1 A 0 ) | 
						
							| 256 |  | fvex |  |-  ( M ` 1 ) e. _V | 
						
							| 257 | 256 | fvconst2 |  |-  ( 0 e. ( 0 [,] 1 ) -> ( ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ` 0 ) = ( M ` 1 ) ) | 
						
							| 258 | 25 257 | ax-mp |  |-  ( ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ` 0 ) = ( M ` 1 ) | 
						
							| 259 | 250 255 258 | 3eqtr4g |  |-  ( ph -> ( ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) ` 0 ) = ( ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ` 0 ) ) | 
						
							| 260 | 1 21 4 116 118 62 210 214 245 259 | cvmliftmoi |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) = ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) ) | 
						
							| 261 |  | fconstmpt |  |-  ( ( 0 [,] 1 ) X. { ( M ` 1 ) } ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 1 ) ) | 
						
							| 262 | 260 261 | eqtrdi |  |-  ( ph -> ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 1 ) ) ) | 
						
							| 263 |  | mpteqb |  |-  ( A. s e. ( 0 [,] 1 ) ( 1 A s ) e. _V -> ( ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 1 ) ) <-> A. s e. ( 0 [,] 1 ) ( 1 A s ) = ( M ` 1 ) ) ) | 
						
							| 264 |  | ovexd |  |-  ( s e. ( 0 [,] 1 ) -> ( 1 A s ) e. _V ) | 
						
							| 265 | 263 264 | mprg |  |-  ( ( s e. ( 0 [,] 1 ) |-> ( 1 A s ) ) = ( s e. ( 0 [,] 1 ) |-> ( M ` 1 ) ) <-> A. s e. ( 0 [,] 1 ) ( 1 A s ) = ( M ` 1 ) ) | 
						
							| 266 | 262 265 | sylib |  |-  ( ph -> A. s e. ( 0 [,] 1 ) ( 1 A s ) = ( M ` 1 ) ) | 
						
							| 267 | 266 | r19.21bi |  |-  ( ( ph /\ s e. ( 0 [,] 1 ) ) -> ( 1 A s ) = ( M ` 1 ) ) | 
						
							| 268 | 14 19 10 90 208 209 267 | isphtpy2d |  |-  ( ph -> A e. ( M ( PHtpy ` C ) N ) ) |