| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftpht.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmliftpht.m |
⊢ 𝑀 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 3 |
|
cvmliftpht.n |
⊢ 𝑁 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 4 |
|
cvmliftpht.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 5 |
|
cvmliftpht.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 6 |
|
cvmliftpht.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
| 7 |
|
cvmliftphtlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
| 8 |
|
cvmliftphtlem.h |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
| 9 |
|
cvmliftphtlem.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
| 10 |
|
cvmliftphtlem.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ( II ×t II ) Cn 𝐶 ) ) |
| 11 |
|
cvmliftphtlem.c |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐴 ) = 𝐾 ) |
| 12 |
|
cvmliftphtlem.0 |
⊢ ( 𝜑 → ( 0 𝐴 0 ) = 𝑃 ) |
| 13 |
1 2 4 7 5 6
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑀 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑀 ) = 𝐺 ∧ ( 𝑀 ‘ 0 ) = 𝑃 ) ) |
| 14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( II Cn 𝐶 ) ) |
| 15 |
7 8 9
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
| 16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
| 17 |
6 16
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐻 ‘ 0 ) ) |
| 18 |
1 3 4 8 5 17
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑁 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑁 ) = 𝐻 ∧ ( 𝑁 ‘ 0 ) = 𝑃 ) ) |
| 19 |
18
|
simp1d |
⊢ ( 𝜑 → 𝑁 ∈ ( II Cn 𝐶 ) ) |
| 20 |
|
iitop |
⊢ II ∈ Top |
| 21 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
| 22 |
20 20 21 21
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
| 23 |
22 1
|
cnf |
⊢ ( 𝐴 ∈ ( ( II ×t II ) Cn 𝐶 ) → 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
| 24 |
10 23
|
syl |
⊢ ( 𝜑 → 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
| 25 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
| 26 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → 〈 𝑠 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 27 |
25 26
|
mpan2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 𝑠 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 28 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 𝑠 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) ) |
| 29 |
24 27 28
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) ) |
| 30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ∘ 𝐴 ) = 𝐾 ) |
| 31 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝐾 ‘ 〈 𝑠 , 0 〉 ) ) |
| 32 |
29 31
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) = ( 𝐾 ‘ 〈 𝑠 , 0 〉 ) ) |
| 33 |
|
df-ov |
⊢ ( 𝑠 𝐴 0 ) = ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) |
| 34 |
33
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) |
| 35 |
|
df-ov |
⊢ ( 𝑠 𝐾 0 ) = ( 𝐾 ‘ 〈 𝑠 , 0 〉 ) |
| 36 |
32 34 35
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) = ( 𝑠 𝐾 0 ) ) |
| 37 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
| 39 |
7 8
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( 𝐺 ( II Htpy 𝐽 ) 𝐻 ) ) |
| 40 |
39 9
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 ( II Htpy 𝐽 ) 𝐻 ) ) |
| 41 |
38 7 8 40
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 𝐾 0 ) = ( 𝐺 ‘ 𝑠 ) ∧ ( 𝑠 𝐾 1 ) = ( 𝐻 ‘ 𝑠 ) ) ) |
| 42 |
41
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐾 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
| 43 |
36 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
| 44 |
43
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 45 |
|
fovcdm |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) ∈ 𝐵 ) |
| 46 |
25 45
|
mp3an3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) ∈ 𝐵 ) |
| 47 |
24 46
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) ∈ 𝐵 ) |
| 48 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) |
| 49 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 50 |
4 49
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
| 51 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 52 |
1 51
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
| 53 |
50 52
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
| 54 |
53
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 55 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑠 𝐴 0 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) |
| 56 |
47 48 54 55
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) ) |
| 57 |
21 51
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
| 58 |
7 57
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
| 59 |
58
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
| 60 |
44 56 59
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ) |
| 61 |
38
|
cnmptid |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ 𝑠 ) ∈ ( II Cn II ) ) |
| 62 |
25
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
| 63 |
38 38 62
|
cnmptc |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ 0 ) ∈ ( II Cn II ) ) |
| 64 |
38 61 63 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ∈ ( II Cn 𝐶 ) ) |
| 65 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) ) → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 66 |
4 7 5 6 65
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 67 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) ) |
| 68 |
67
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ↔ ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ) ) |
| 69 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ‘ 0 ) ) |
| 70 |
|
oveq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 𝐴 0 ) = ( 0 𝐴 0 ) ) |
| 71 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) |
| 72 |
|
ovex |
⊢ ( 0 𝐴 0 ) ∈ V |
| 73 |
70 71 72
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ‘ 0 ) = ( 0 𝐴 0 ) ) |
| 74 |
25 73
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ‘ 0 ) = ( 0 𝐴 0 ) |
| 75 |
69 74
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( 𝑓 ‘ 0 ) = ( 0 𝐴 0 ) ) |
| 76 |
75
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 0 𝐴 0 ) = 𝑃 ) ) |
| 77 |
68 76
|
anbi12d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ∧ ( 0 𝐴 0 ) = 𝑃 ) ) ) |
| 78 |
77
|
riota2 |
⊢ ( ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ∈ ( II Cn 𝐶 ) ∧ ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ∧ ( 0 𝐴 0 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) ) |
| 79 |
64 66 78
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ∧ ( 0 𝐴 0 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) ) |
| 80 |
60 12 79
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) |
| 81 |
2 80
|
eqtrid |
⊢ ( 𝜑 → 𝑀 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) |
| 82 |
21 1
|
cnf |
⊢ ( 𝑀 ∈ ( II Cn 𝐶 ) → 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 83 |
14 82
|
syl |
⊢ ( 𝜑 → 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 84 |
83
|
feqmptd |
⊢ ( 𝜑 → 𝑀 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ) |
| 85 |
81 84
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ) |
| 86 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) ) |
| 87 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 𝑠 𝐴 0 ) ∈ V ) |
| 88 |
86 87
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) |
| 89 |
85 88
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) |
| 90 |
89
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) |
| 91 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
| 92 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → 〈 𝑠 , 1 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 93 |
91 92
|
mpan2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 𝑠 , 1 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 94 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 𝑠 , 1 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) ) |
| 95 |
24 93 94
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) ) |
| 96 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝐾 ‘ 〈 𝑠 , 1 〉 ) ) |
| 97 |
95 96
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) = ( 𝐾 ‘ 〈 𝑠 , 1 〉 ) ) |
| 98 |
|
df-ov |
⊢ ( 𝑠 𝐴 1 ) = ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) |
| 99 |
98
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) |
| 100 |
|
df-ov |
⊢ ( 𝑠 𝐾 1 ) = ( 𝐾 ‘ 〈 𝑠 , 1 〉 ) |
| 101 |
97 99 100
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) = ( 𝑠 𝐾 1 ) ) |
| 102 |
41
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐾 1 ) = ( 𝐻 ‘ 𝑠 ) ) |
| 103 |
101 102
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) = ( 𝐻 ‘ 𝑠 ) ) |
| 104 |
103
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 105 |
|
fovcdm |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) ∈ 𝐵 ) |
| 106 |
91 105
|
mp3an3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) ∈ 𝐵 ) |
| 107 |
24 106
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) ∈ 𝐵 ) |
| 108 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) |
| 109 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑠 𝐴 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) |
| 110 |
107 108 54 109
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) ) |
| 111 |
21 51
|
cnf |
⊢ ( 𝐻 ∈ ( II Cn 𝐽 ) → 𝐻 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
| 112 |
8 111
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
| 113 |
112
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
| 114 |
104 110 113
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ) |
| 115 |
|
iiconn |
⊢ II ∈ Conn |
| 116 |
115
|
a1i |
⊢ ( 𝜑 → II ∈ Conn ) |
| 117 |
|
iinllyconn |
⊢ II ∈ 𝑛-Locally Conn |
| 118 |
117
|
a1i |
⊢ ( 𝜑 → II ∈ 𝑛-Locally Conn ) |
| 119 |
38 63 61 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ∈ ( II Cn 𝐶 ) ) |
| 120 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
| 121 |
4 120
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
| 122 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 123 |
121 122
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
| 124 |
|
ffvelcdm |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑀 ‘ 0 ) ∈ 𝐵 ) |
| 125 |
83 25 124
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ‘ 0 ) ∈ 𝐵 ) |
| 126 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ( 𝑀 ‘ 0 ) ∈ 𝐵 ) → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ∈ ( II Cn 𝐶 ) ) |
| 127 |
38 123 125 126
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ∈ ( II Cn 𝐶 ) ) |
| 128 |
7 8 9
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐾 𝑠 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝐾 𝑠 ) = ( 𝐺 ‘ 1 ) ) ) |
| 129 |
128
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐾 𝑠 ) = ( 𝐺 ‘ 0 ) ) |
| 130 |
|
opelxpi |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 131 |
25 130
|
mpan |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 132 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) ) |
| 133 |
24 131 132
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) ) |
| 134 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝐾 ‘ 〈 0 , 𝑠 〉 ) ) |
| 135 |
133 134
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) = ( 𝐾 ‘ 〈 0 , 𝑠 〉 ) ) |
| 136 |
|
df-ov |
⊢ ( 0 𝐴 𝑠 ) = ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) |
| 137 |
136
|
fveq2i |
⊢ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) |
| 138 |
|
df-ov |
⊢ ( 0 𝐾 𝑠 ) = ( 𝐾 ‘ 〈 0 , 𝑠 〉 ) |
| 139 |
135 137 138
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) = ( 0 𝐾 𝑠 ) ) |
| 140 |
13
|
simp3d |
⊢ ( 𝜑 → ( 𝑀 ‘ 0 ) = 𝑃 ) |
| 141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑀 ‘ 0 ) = 𝑃 ) |
| 142 |
141
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) = ( 𝐹 ‘ 𝑃 ) ) |
| 143 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
| 144 |
142 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) = ( 𝐺 ‘ 0 ) ) |
| 145 |
129 139 144
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) |
| 146 |
145
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) ) |
| 147 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) |
| 148 |
146 147
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) |
| 149 |
|
fovcdm |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) ∈ 𝐵 ) |
| 150 |
25 149
|
mp3an2 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) ∈ 𝐵 ) |
| 151 |
24 150
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) ∈ 𝐵 ) |
| 152 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ) |
| 153 |
|
fveq2 |
⊢ ( 𝑥 = ( 0 𝐴 𝑠 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) |
| 154 |
151 152 54 153
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) ) |
| 155 |
53
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 156 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝐵 ∧ ( 𝑀 ‘ 0 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) |
| 157 |
155 125 156
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) |
| 158 |
148 154 157
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ) = ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) ) |
| 159 |
12 140
|
eqtr4d |
⊢ ( 𝜑 → ( 0 𝐴 0 ) = ( 𝑀 ‘ 0 ) ) |
| 160 |
|
oveq2 |
⊢ ( 𝑠 = 0 → ( 0 𝐴 𝑠 ) = ( 0 𝐴 0 ) ) |
| 161 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) |
| 162 |
160 161 72
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ‘ 0 ) = ( 0 𝐴 0 ) ) |
| 163 |
25 162
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ‘ 0 ) = ( 0 𝐴 0 ) |
| 164 |
|
fvex |
⊢ ( 𝑀 ‘ 0 ) ∈ V |
| 165 |
164
|
fvconst2 |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) = ( 𝑀 ‘ 0 ) ) |
| 166 |
25 165
|
ax-mp |
⊢ ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) = ( 𝑀 ‘ 0 ) |
| 167 |
159 163 166
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ‘ 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) ) |
| 168 |
1 21 4 116 118 62 119 127 158 167
|
cvmliftmoi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) |
| 169 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) |
| 170 |
168 169
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) ) |
| 171 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) ) |
| 172 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 0 𝐴 𝑠 ) ∈ V ) |
| 173 |
171 172
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) |
| 174 |
170 173
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) |
| 175 |
|
oveq2 |
⊢ ( 𝑠 = 1 → ( 0 𝐴 𝑠 ) = ( 0 𝐴 1 ) ) |
| 176 |
175
|
eqeq1d |
⊢ ( 𝑠 = 1 → ( ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ↔ ( 0 𝐴 1 ) = ( 𝑀 ‘ 0 ) ) ) |
| 177 |
176
|
rspcv |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) → ( 0 𝐴 1 ) = ( 𝑀 ‘ 0 ) ) ) |
| 178 |
91 174 177
|
mpsyl |
⊢ ( 𝜑 → ( 0 𝐴 1 ) = ( 𝑀 ‘ 0 ) ) |
| 179 |
178 140
|
eqtrd |
⊢ ( 𝜑 → ( 0 𝐴 1 ) = 𝑃 ) |
| 180 |
91
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( 0 [,] 1 ) ) |
| 181 |
38 38 180
|
cnmptc |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( II Cn II ) ) |
| 182 |
38 61 181 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ∈ ( II Cn 𝐶 ) ) |
| 183 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐻 ‘ 0 ) ) ) → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 184 |
4 8 5 17 183
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
| 185 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) ) |
| 186 |
185
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ↔ ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ) ) |
| 187 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ‘ 0 ) ) |
| 188 |
|
oveq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 𝐴 1 ) = ( 0 𝐴 1 ) ) |
| 189 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) |
| 190 |
|
ovex |
⊢ ( 0 𝐴 1 ) ∈ V |
| 191 |
188 189 190
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ‘ 0 ) = ( 0 𝐴 1 ) ) |
| 192 |
25 191
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ‘ 0 ) = ( 0 𝐴 1 ) |
| 193 |
187 192
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( 𝑓 ‘ 0 ) = ( 0 𝐴 1 ) ) |
| 194 |
193
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 0 𝐴 1 ) = 𝑃 ) ) |
| 195 |
186 194
|
anbi12d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ∧ ( 0 𝐴 1 ) = 𝑃 ) ) ) |
| 196 |
195
|
riota2 |
⊢ ( ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ∈ ( II Cn 𝐶 ) ∧ ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ∧ ( 0 𝐴 1 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) ) |
| 197 |
182 184 196
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ∧ ( 0 𝐴 1 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) ) |
| 198 |
114 179 197
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) |
| 199 |
3 198
|
eqtrid |
⊢ ( 𝜑 → 𝑁 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) |
| 200 |
21 1
|
cnf |
⊢ ( 𝑁 ∈ ( II Cn 𝐶 ) → 𝑁 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 201 |
19 200
|
syl |
⊢ ( 𝜑 → 𝑁 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 202 |
201
|
feqmptd |
⊢ ( 𝜑 → 𝑁 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ) |
| 203 |
199 202
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ) |
| 204 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) ) |
| 205 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 𝑠 𝐴 1 ) ∈ V ) |
| 206 |
204 205
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) |
| 207 |
203 206
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) |
| 208 |
207
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) |
| 209 |
174
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) |
| 210 |
38 181 61 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ∈ ( II Cn 𝐶 ) ) |
| 211 |
|
ffvelcdm |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑀 ‘ 1 ) ∈ 𝐵 ) |
| 212 |
83 91 211
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ‘ 1 ) ∈ 𝐵 ) |
| 213 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ( 𝑀 ‘ 1 ) ∈ 𝐵 ) → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ∈ ( II Cn 𝐶 ) ) |
| 214 |
38 123 212 213
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ∈ ( II Cn 𝐶 ) ) |
| 215 |
|
opelxpi |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 216 |
91 215
|
mpan |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
| 217 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) ) |
| 218 |
24 216 217
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) ) |
| 219 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝐾 ‘ 〈 1 , 𝑠 〉 ) ) |
| 220 |
218 219
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) = ( 𝐾 ‘ 〈 1 , 𝑠 〉 ) ) |
| 221 |
|
df-ov |
⊢ ( 1 𝐴 𝑠 ) = ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) |
| 222 |
221
|
fveq2i |
⊢ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) |
| 223 |
|
df-ov |
⊢ ( 1 𝐾 𝑠 ) = ( 𝐾 ‘ 〈 1 , 𝑠 〉 ) |
| 224 |
220 222 223
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) = ( 1 𝐾 𝑠 ) ) |
| 225 |
128
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐾 𝑠 ) = ( 𝐺 ‘ 1 ) ) |
| 226 |
13
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑀 ) = 𝐺 ) |
| 227 |
226
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ∘ 𝑀 ) = 𝐺 ) |
| 228 |
227
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑀 ) ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
| 229 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
| 230 |
|
fvco3 |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑀 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
| 231 |
229 91 230
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑀 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
| 232 |
228 231
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
| 233 |
224 225 232
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
| 234 |
233
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) ) |
| 235 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
| 236 |
234 235
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) |
| 237 |
|
fovcdm |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) ∈ 𝐵 ) |
| 238 |
91 237
|
mp3an2 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) ∈ 𝐵 ) |
| 239 |
24 238
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) ∈ 𝐵 ) |
| 240 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ) |
| 241 |
|
fveq2 |
⊢ ( 𝑥 = ( 1 𝐴 𝑠 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) |
| 242 |
239 240 54 241
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) ) |
| 243 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝐵 ∧ ( 𝑀 ‘ 1 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) |
| 244 |
155 212 243
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) |
| 245 |
236 242 244
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ) = ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) ) |
| 246 |
|
oveq1 |
⊢ ( 𝑠 = 1 → ( 𝑠 𝐴 0 ) = ( 1 𝐴 0 ) ) |
| 247 |
|
fveq2 |
⊢ ( 𝑠 = 1 → ( 𝑀 ‘ 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
| 248 |
246 247
|
eqeq12d |
⊢ ( 𝑠 = 1 → ( ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ↔ ( 1 𝐴 0 ) = ( 𝑀 ‘ 1 ) ) ) |
| 249 |
248
|
rspcv |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) → ( 1 𝐴 0 ) = ( 𝑀 ‘ 1 ) ) ) |
| 250 |
91 89 249
|
mpsyl |
⊢ ( 𝜑 → ( 1 𝐴 0 ) = ( 𝑀 ‘ 1 ) ) |
| 251 |
|
oveq2 |
⊢ ( 𝑠 = 0 → ( 1 𝐴 𝑠 ) = ( 1 𝐴 0 ) ) |
| 252 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) |
| 253 |
|
ovex |
⊢ ( 1 𝐴 0 ) ∈ V |
| 254 |
251 252 253
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ‘ 0 ) = ( 1 𝐴 0 ) ) |
| 255 |
25 254
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ‘ 0 ) = ( 1 𝐴 0 ) |
| 256 |
|
fvex |
⊢ ( 𝑀 ‘ 1 ) ∈ V |
| 257 |
256
|
fvconst2 |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) = ( 𝑀 ‘ 1 ) ) |
| 258 |
25 257
|
ax-mp |
⊢ ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) = ( 𝑀 ‘ 1 ) |
| 259 |
250 255 258
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ‘ 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) ) |
| 260 |
1 21 4 116 118 62 210 214 245 259
|
cvmliftmoi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) |
| 261 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) |
| 262 |
260 261
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) ) |
| 263 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) ) |
| 264 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 1 𝐴 𝑠 ) ∈ V ) |
| 265 |
263 264
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
| 266 |
262 265
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
| 267 |
266
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
| 268 |
14 19 10 90 208 209 267
|
isphtpy2d |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ) |