| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftpht.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmliftpht.m | ⊢ 𝑀  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 3 |  | cvmliftpht.n | ⊢ 𝑁  =  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 4 |  | cvmliftpht.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftpht.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 6 |  | cvmliftpht.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 7 |  | cvmliftphtlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmliftphtlem.h | ⊢ ( 𝜑  →  𝐻  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 9 |  | cvmliftphtlem.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) | 
						
							| 10 |  | cvmliftphtlem.a | ⊢ ( 𝜑  →  𝐴  ∈  ( ( II  ×t  II )  Cn  𝐶 ) ) | 
						
							| 11 |  | cvmliftphtlem.c | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐴 )  =  𝐾 ) | 
						
							| 12 |  | cvmliftphtlem.0 | ⊢ ( 𝜑  →  ( 0 𝐴 0 )  =  𝑃 ) | 
						
							| 13 | 1 2 4 7 5 6 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝑀 )  =  𝐺  ∧  ( 𝑀 ‘ 0 )  =  𝑃 ) ) | 
						
							| 14 | 13 | simp1d | ⊢ ( 𝜑  →  𝑀  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 15 | 7 8 9 | phtpy01 | ⊢ ( 𝜑  →  ( ( 𝐺 ‘ 0 )  =  ( 𝐻 ‘ 0 )  ∧  ( 𝐺 ‘ 1 )  =  ( 𝐻 ‘ 1 ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  ( 𝐺 ‘ 0 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 17 | 6 16 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐻 ‘ 0 ) ) | 
						
							| 18 | 1 3 4 8 5 17 | cvmliftiota | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝑁 )  =  𝐻  ∧  ( 𝑁 ‘ 0 )  =  𝑃 ) ) | 
						
							| 19 | 18 | simp1d | ⊢ ( 𝜑  →  𝑁  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 20 |  | iitop | ⊢ II  ∈  Top | 
						
							| 21 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 22 | 20 20 21 21 | txunii | ⊢ ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) )  =  ∪  ( II  ×t  II ) | 
						
							| 23 | 22 1 | cnf | ⊢ ( 𝐴  ∈  ( ( II  ×t  II )  Cn  𝐶 )  →  𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 24 | 10 23 | syl | ⊢ ( 𝜑  →  𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵 ) | 
						
							| 25 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 26 |  | opelxpi | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  〈 𝑠 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 27 | 25 26 | mpan2 | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  〈 𝑠 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 28 |  | fvco3 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  〈 𝑠 ,  0 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 𝑠 ,  0 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  0 〉 ) ) ) | 
						
							| 29 | 24 27 28 | syl2an | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 𝑠 ,  0 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  0 〉 ) ) ) | 
						
							| 30 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹  ∘  𝐴 )  =  𝐾 ) | 
						
							| 31 | 30 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 𝑠 ,  0 〉 )  =  ( 𝐾 ‘ 〈 𝑠 ,  0 〉 ) ) | 
						
							| 32 | 29 31 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  0 〉 ) )  =  ( 𝐾 ‘ 〈 𝑠 ,  0 〉 ) ) | 
						
							| 33 |  | df-ov | ⊢ ( 𝑠 𝐴 0 )  =  ( 𝐴 ‘ 〈 𝑠 ,  0 〉 ) | 
						
							| 34 | 33 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  0 〉 ) ) | 
						
							| 35 |  | df-ov | ⊢ ( 𝑠 𝐾 0 )  =  ( 𝐾 ‘ 〈 𝑠 ,  0 〉 ) | 
						
							| 36 | 32 34 35 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝑠 𝐴 0 ) )  =  ( 𝑠 𝐾 0 ) ) | 
						
							| 37 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 38 | 37 | a1i | ⊢ ( 𝜑  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 39 | 7 8 | phtpyhtpy | ⊢ ( 𝜑  →  ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 )  ⊆  ( 𝐺 ( II  Htpy  𝐽 ) 𝐻 ) ) | 
						
							| 40 | 39 9 | sseldd | ⊢ ( 𝜑  →  𝐾  ∈  ( 𝐺 ( II  Htpy  𝐽 ) 𝐻 ) ) | 
						
							| 41 | 38 7 8 40 | htpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝑠 𝐾 0 )  =  ( 𝐺 ‘ 𝑠 )  ∧  ( 𝑠 𝐾 1 )  =  ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 42 | 41 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐾 0 )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 43 | 36 42 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝑠 𝐴 0 ) )  =  ( 𝐺 ‘ 𝑠 ) ) | 
						
							| 44 | 43 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ 𝑠 ) ) ) | 
						
							| 45 |  | fovcdm | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  𝑠  ∈  ( 0 [,] 1 )  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 0 )  ∈  𝐵 ) | 
						
							| 46 | 25 45 | mp3an3 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 0 )  ∈  𝐵 ) | 
						
							| 47 | 24 46 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 0 )  ∈  𝐵 ) | 
						
							| 48 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ) | 
						
							| 49 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 50 | 4 49 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 51 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 52 | 1 51 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 53 | 50 52 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ∪  𝐽 ) | 
						
							| 54 | 53 | feqmptd | ⊢ ( 𝜑  →  𝐹  =  ( 𝑥  ∈  𝐵  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 55 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑠 𝐴 0 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) | 
						
							| 56 | 47 48 54 55 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) ) | 
						
							| 57 | 21 51 | cnf | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  𝐺 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 58 | 7 57 | syl | ⊢ ( 𝜑  →  𝐺 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 59 | 58 | feqmptd | ⊢ ( 𝜑  →  𝐺  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ 𝑠 ) ) ) | 
						
							| 60 | 44 56 59 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) )  =  𝐺 ) | 
						
							| 61 | 38 | cnmptid | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  𝑠 )  ∈  ( II  Cn  II ) ) | 
						
							| 62 | 25 | a1i | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] 1 ) ) | 
						
							| 63 | 38 38 62 | cnmptc | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  0 )  ∈  ( II  Cn  II ) ) | 
						
							| 64 | 38 61 63 10 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 65 | 1 | cvmlift | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐺  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) )  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 66 | 4 7 5 6 65 | syl22anc | ⊢ ( 𝜑  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 67 |  | coeq2 | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ) ) | 
						
							| 68 | 67 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  →  ( ( 𝐹  ∘  𝑓 )  =  𝐺  ↔  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) )  =  𝐺 ) ) | 
						
							| 69 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  →  ( 𝑓 ‘ 0 )  =  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ‘ 0 ) ) | 
						
							| 70 |  | oveq1 | ⊢ ( 𝑠  =  0  →  ( 𝑠 𝐴 0 )  =  ( 0 𝐴 0 ) ) | 
						
							| 71 |  | eqid | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) | 
						
							| 72 |  | ovex | ⊢ ( 0 𝐴 0 )  ∈  V | 
						
							| 73 | 70 71 72 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ‘ 0 )  =  ( 0 𝐴 0 ) ) | 
						
							| 74 | 25 73 | ax-mp | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ‘ 0 )  =  ( 0 𝐴 0 ) | 
						
							| 75 | 69 74 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  →  ( 𝑓 ‘ 0 )  =  ( 0 𝐴 0 ) ) | 
						
							| 76 | 75 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  →  ( ( 𝑓 ‘ 0 )  =  𝑃  ↔  ( 0 𝐴 0 )  =  𝑃 ) ) | 
						
							| 77 | 68 76 | anbi12d | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  →  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) )  =  𝐺  ∧  ( 0 𝐴 0 )  =  𝑃 ) ) ) | 
						
							| 78 | 77 | riota2 | ⊢ ( ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  ∈  ( II  Cn  𝐶 )  ∧  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  →  ( ( ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) )  =  𝐺  ∧  ( 0 𝐴 0 )  =  𝑃 )  ↔  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ) ) | 
						
							| 79 | 64 66 78 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) )  =  𝐺  ∧  ( 0 𝐴 0 )  =  𝑃 )  ↔  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ) ) | 
						
							| 80 | 60 12 79 | mpbi2and | ⊢ ( 𝜑  →  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ) | 
						
							| 81 | 2 80 | eqtrid | ⊢ ( 𝜑  →  𝑀  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) ) ) | 
						
							| 82 | 21 1 | cnf | ⊢ ( 𝑀  ∈  ( II  Cn  𝐶 )  →  𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 83 | 14 82 | syl | ⊢ ( 𝜑  →  𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 84 | 83 | feqmptd | ⊢ ( 𝜑  →  𝑀  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 𝑠 ) ) ) | 
						
							| 85 | 81 84 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 𝑠 ) ) ) | 
						
							| 86 |  | mpteqb | ⊢ ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 0 )  ∈  V  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 𝑠 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 0 )  =  ( 𝑀 ‘ 𝑠 ) ) ) | 
						
							| 87 |  | ovexd | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( 𝑠 𝐴 0 )  ∈  V ) | 
						
							| 88 | 86 87 | mprg | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 0 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 𝑠 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 0 )  =  ( 𝑀 ‘ 𝑠 ) ) | 
						
							| 89 | 85 88 | sylib | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 0 )  =  ( 𝑀 ‘ 𝑠 ) ) | 
						
							| 90 | 89 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 0 )  =  ( 𝑀 ‘ 𝑠 ) ) | 
						
							| 91 |  | 1elunit | ⊢ 1  ∈  ( 0 [,] 1 ) | 
						
							| 92 |  | opelxpi | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ∧  1  ∈  ( 0 [,] 1 ) )  →  〈 𝑠 ,  1 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 93 | 91 92 | mpan2 | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  〈 𝑠 ,  1 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 94 |  | fvco3 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  〈 𝑠 ,  1 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 𝑠 ,  1 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  1 〉 ) ) ) | 
						
							| 95 | 24 93 94 | syl2an | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 𝑠 ,  1 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  1 〉 ) ) ) | 
						
							| 96 | 30 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 𝑠 ,  1 〉 )  =  ( 𝐾 ‘ 〈 𝑠 ,  1 〉 ) ) | 
						
							| 97 | 95 96 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  1 〉 ) )  =  ( 𝐾 ‘ 〈 𝑠 ,  1 〉 ) ) | 
						
							| 98 |  | df-ov | ⊢ ( 𝑠 𝐴 1 )  =  ( 𝐴 ‘ 〈 𝑠 ,  1 〉 ) | 
						
							| 99 | 98 | fveq2i | ⊢ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 ,  1 〉 ) ) | 
						
							| 100 |  | df-ov | ⊢ ( 𝑠 𝐾 1 )  =  ( 𝐾 ‘ 〈 𝑠 ,  1 〉 ) | 
						
							| 101 | 97 99 100 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝑠 𝐴 1 ) )  =  ( 𝑠 𝐾 1 ) ) | 
						
							| 102 | 41 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐾 1 )  =  ( 𝐻 ‘ 𝑠 ) ) | 
						
							| 103 | 101 102 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝑠 𝐴 1 ) )  =  ( 𝐻 ‘ 𝑠 ) ) | 
						
							| 104 | 103 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 105 |  | fovcdm | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  𝑠  ∈  ( 0 [,] 1 )  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 1 )  ∈  𝐵 ) | 
						
							| 106 | 91 105 | mp3an3 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 1 )  ∈  𝐵 ) | 
						
							| 107 | 24 106 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 1 )  ∈  𝐵 ) | 
						
							| 108 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ) | 
						
							| 109 |  | fveq2 | ⊢ ( 𝑥  =  ( 𝑠 𝐴 1 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) | 
						
							| 110 | 107 108 54 109 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) ) | 
						
							| 111 | 21 51 | cnf | ⊢ ( 𝐻  ∈  ( II  Cn  𝐽 )  →  𝐻 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 112 | 8 111 | syl | ⊢ ( 𝜑  →  𝐻 : ( 0 [,] 1 ) ⟶ ∪  𝐽 ) | 
						
							| 113 | 112 | feqmptd | ⊢ ( 𝜑  →  𝐻  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐻 ‘ 𝑠 ) ) ) | 
						
							| 114 | 104 110 113 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) )  =  𝐻 ) | 
						
							| 115 |  | iiconn | ⊢ II  ∈  Conn | 
						
							| 116 | 115 | a1i | ⊢ ( 𝜑  →  II  ∈  Conn ) | 
						
							| 117 |  | iinllyconn | ⊢ II  ∈  𝑛-Locally  Conn | 
						
							| 118 | 117 | a1i | ⊢ ( 𝜑  →  II  ∈  𝑛-Locally  Conn ) | 
						
							| 119 | 38 63 61 10 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 120 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 121 | 4 120 | syl | ⊢ ( 𝜑  →  𝐶  ∈  Top ) | 
						
							| 122 | 1 | toptopon | ⊢ ( 𝐶  ∈  Top  ↔  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 123 | 121 122 | sylib | ⊢ ( 𝜑  →  𝐶  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 124 |  | ffvelcdm | ⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵  ∧  0  ∈  ( 0 [,] 1 ) )  →  ( 𝑀 ‘ 0 )  ∈  𝐵 ) | 
						
							| 125 | 83 25 124 | sylancl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 0 )  ∈  𝐵 ) | 
						
							| 126 |  | cnconst2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ( 𝑀 ‘ 0 )  ∈  𝐵 )  →  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 127 | 38 123 125 126 | syl3anc | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 128 | 7 8 9 | phtpyi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 0 𝐾 𝑠 )  =  ( 𝐺 ‘ 0 )  ∧  ( 1 𝐾 𝑠 )  =  ( 𝐺 ‘ 1 ) ) ) | 
						
							| 129 | 128 | simpld | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐾 𝑠 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 130 |  | opelxpi | ⊢ ( ( 0  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 0 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 131 | 25 130 | mpan | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  〈 0 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 132 |  | fvco3 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  〈 0 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 0 ,  𝑠 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 ,  𝑠 〉 ) ) ) | 
						
							| 133 | 24 131 132 | syl2an | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 0 ,  𝑠 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 ,  𝑠 〉 ) ) ) | 
						
							| 134 | 30 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 0 ,  𝑠 〉 )  =  ( 𝐾 ‘ 〈 0 ,  𝑠 〉 ) ) | 
						
							| 135 | 133 134 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 ,  𝑠 〉 ) )  =  ( 𝐾 ‘ 〈 0 ,  𝑠 〉 ) ) | 
						
							| 136 |  | df-ov | ⊢ ( 0 𝐴 𝑠 )  =  ( 𝐴 ‘ 〈 0 ,  𝑠 〉 ) | 
						
							| 137 | 136 | fveq2i | ⊢ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 ,  𝑠 〉 ) ) | 
						
							| 138 |  | df-ov | ⊢ ( 0 𝐾 𝑠 )  =  ( 𝐾 ‘ 〈 0 ,  𝑠 〉 ) | 
						
							| 139 | 135 137 138 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 0 𝐴 𝑠 ) )  =  ( 0 𝐾 𝑠 ) ) | 
						
							| 140 | 13 | simp3d | ⊢ ( 𝜑  →  ( 𝑀 ‘ 0 )  =  𝑃 ) | 
						
							| 141 | 140 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑀 ‘ 0 )  =  𝑃 ) | 
						
							| 142 | 141 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝑀 ‘ 0 ) )  =  ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 143 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 144 | 142 143 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝑀 ‘ 0 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 145 | 129 139 144 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 0 𝐴 𝑠 ) )  =  ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) | 
						
							| 146 | 145 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) ) | 
						
							| 147 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) | 
						
							| 148 | 146 147 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) | 
						
							| 149 |  | fovcdm | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  0  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐴 𝑠 )  ∈  𝐵 ) | 
						
							| 150 | 25 149 | mp3an2 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐴 𝑠 )  ∈  𝐵 ) | 
						
							| 151 | 24 150 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐴 𝑠 )  ∈  𝐵 ) | 
						
							| 152 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) ) | 
						
							| 153 |  | fveq2 | ⊢ ( 𝑥  =  ( 0 𝐴 𝑠 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) | 
						
							| 154 | 151 152 54 153 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) ) | 
						
							| 155 | 53 | ffnd | ⊢ ( 𝜑  →  𝐹  Fn  𝐵 ) | 
						
							| 156 |  | fcoconst | ⊢ ( ( 𝐹  Fn  𝐵  ∧  ( 𝑀 ‘ 0 )  ∈  𝐵 )  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) | 
						
							| 157 | 155 125 156 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) | 
						
							| 158 | 148 154 157 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) )  =  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) ) ) | 
						
							| 159 | 12 140 | eqtr4d | ⊢ ( 𝜑  →  ( 0 𝐴 0 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 160 |  | oveq2 | ⊢ ( 𝑠  =  0  →  ( 0 𝐴 𝑠 )  =  ( 0 𝐴 0 ) ) | 
						
							| 161 |  | eqid | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) | 
						
							| 162 | 160 161 72 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) ‘ 0 )  =  ( 0 𝐴 0 ) ) | 
						
							| 163 | 25 162 | ax-mp | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) ‘ 0 )  =  ( 0 𝐴 0 ) | 
						
							| 164 |  | fvex | ⊢ ( 𝑀 ‘ 0 )  ∈  V | 
						
							| 165 | 164 | fvconst2 | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) ‘ 0 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 166 | 25 165 | ax-mp | ⊢ ( ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) ‘ 0 )  =  ( 𝑀 ‘ 0 ) | 
						
							| 167 | 159 163 166 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) ) ‘ 0 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) ) | 
						
							| 168 | 1 21 4 116 118 62 119 127 158 167 | cvmliftmoi | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } ) ) | 
						
							| 169 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 0 ) } )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 0 ) ) | 
						
							| 170 | 168 169 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 0 ) ) ) | 
						
							| 171 |  | mpteqb | ⊢ ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 0 𝐴 𝑠 )  ∈  V  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 0 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 0 𝐴 𝑠 )  =  ( 𝑀 ‘ 0 ) ) ) | 
						
							| 172 |  | ovexd | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( 0 𝐴 𝑠 )  ∈  V ) | 
						
							| 173 | 171 172 | mprg | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 0 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 0 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 0 𝐴 𝑠 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 174 | 170 173 | sylib | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 0 𝐴 𝑠 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 175 |  | oveq2 | ⊢ ( 𝑠  =  1  →  ( 0 𝐴 𝑠 )  =  ( 0 𝐴 1 ) ) | 
						
							| 176 | 175 | eqeq1d | ⊢ ( 𝑠  =  1  →  ( ( 0 𝐴 𝑠 )  =  ( 𝑀 ‘ 0 )  ↔  ( 0 𝐴 1 )  =  ( 𝑀 ‘ 0 ) ) ) | 
						
							| 177 | 176 | rspcv | ⊢ ( 1  ∈  ( 0 [,] 1 )  →  ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 0 𝐴 𝑠 )  =  ( 𝑀 ‘ 0 )  →  ( 0 𝐴 1 )  =  ( 𝑀 ‘ 0 ) ) ) | 
						
							| 178 | 91 174 177 | mpsyl | ⊢ ( 𝜑  →  ( 0 𝐴 1 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 179 | 178 140 | eqtrd | ⊢ ( 𝜑  →  ( 0 𝐴 1 )  =  𝑃 ) | 
						
							| 180 | 91 | a1i | ⊢ ( 𝜑  →  1  ∈  ( 0 [,] 1 ) ) | 
						
							| 181 | 38 38 180 | cnmptc | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  1 )  ∈  ( II  Cn  II ) ) | 
						
							| 182 | 38 61 181 10 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 183 | 1 | cvmlift | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐻  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐻 ‘ 0 ) ) )  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 184 | 4 8 5 17 183 | syl22anc | ⊢ ( 𝜑  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 185 |  | coeq2 | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ) ) | 
						
							| 186 | 185 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  →  ( ( 𝐹  ∘  𝑓 )  =  𝐻  ↔  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) )  =  𝐻 ) ) | 
						
							| 187 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  →  ( 𝑓 ‘ 0 )  =  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ‘ 0 ) ) | 
						
							| 188 |  | oveq1 | ⊢ ( 𝑠  =  0  →  ( 𝑠 𝐴 1 )  =  ( 0 𝐴 1 ) ) | 
						
							| 189 |  | eqid | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) | 
						
							| 190 |  | ovex | ⊢ ( 0 𝐴 1 )  ∈  V | 
						
							| 191 | 188 189 190 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ‘ 0 )  =  ( 0 𝐴 1 ) ) | 
						
							| 192 | 25 191 | ax-mp | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ‘ 0 )  =  ( 0 𝐴 1 ) | 
						
							| 193 | 187 192 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  →  ( 𝑓 ‘ 0 )  =  ( 0 𝐴 1 ) ) | 
						
							| 194 | 193 | eqeq1d | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  →  ( ( 𝑓 ‘ 0 )  =  𝑃  ↔  ( 0 𝐴 1 )  =  𝑃 ) ) | 
						
							| 195 | 186 194 | anbi12d | ⊢ ( 𝑓  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  →  ( ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) )  =  𝐻  ∧  ( 0 𝐴 1 )  =  𝑃 ) ) ) | 
						
							| 196 | 195 | riota2 | ⊢ ( ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  ∈  ( II  Cn  𝐶 )  ∧  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  →  ( ( ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) )  =  𝐻  ∧  ( 0 𝐴 1 )  =  𝑃 )  ↔  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ) ) | 
						
							| 197 | 182 184 196 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) )  =  𝐻  ∧  ( 0 𝐴 1 )  =  𝑃 )  ↔  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ) ) | 
						
							| 198 | 114 179 197 | mpbi2and | ⊢ ( 𝜑  →  ( ℩ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐻  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ) | 
						
							| 199 | 3 198 | eqtrid | ⊢ ( 𝜑  →  𝑁  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) ) ) | 
						
							| 200 | 21 1 | cnf | ⊢ ( 𝑁  ∈  ( II  Cn  𝐶 )  →  𝑁 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 201 | 19 200 | syl | ⊢ ( 𝜑  →  𝑁 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 202 | 201 | feqmptd | ⊢ ( 𝜑  →  𝑁  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑁 ‘ 𝑠 ) ) ) | 
						
							| 203 | 199 202 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑁 ‘ 𝑠 ) ) ) | 
						
							| 204 |  | mpteqb | ⊢ ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 1 )  ∈  V  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑁 ‘ 𝑠 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 1 )  =  ( 𝑁 ‘ 𝑠 ) ) ) | 
						
							| 205 |  | ovexd | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( 𝑠 𝐴 1 )  ∈  V ) | 
						
							| 206 | 204 205 | mprg | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑠 𝐴 1 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑁 ‘ 𝑠 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 1 )  =  ( 𝑁 ‘ 𝑠 ) ) | 
						
							| 207 | 203 206 | sylib | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 1 )  =  ( 𝑁 ‘ 𝑠 ) ) | 
						
							| 208 | 207 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝑠 𝐴 1 )  =  ( 𝑁 ‘ 𝑠 ) ) | 
						
							| 209 | 174 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 0 𝐴 𝑠 )  =  ( 𝑀 ‘ 0 ) ) | 
						
							| 210 | 38 181 61 10 | cnmpt12f | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 211 |  | ffvelcdm | ⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( 𝑀 ‘ 1 )  ∈  𝐵 ) | 
						
							| 212 | 83 91 211 | sylancl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 1 )  ∈  𝐵 ) | 
						
							| 213 |  | cnconst2 | ⊢ ( ( II  ∈  ( TopOn ‘ ( 0 [,] 1 ) )  ∧  𝐶  ∈  ( TopOn ‘ 𝐵 )  ∧  ( 𝑀 ‘ 1 )  ∈  𝐵 )  →  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 214 | 38 123 212 213 | syl3anc | ⊢ ( 𝜑  →  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } )  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 215 |  | opelxpi | ⊢ ( ( 1  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  〈 1 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 216 | 91 215 | mpan | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  〈 1 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ) | 
						
							| 217 |  | fvco3 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  〈 1 ,  𝑠 〉  ∈  ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 1 ,  𝑠 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 ,  𝑠 〉 ) ) ) | 
						
							| 218 | 24 216 217 | syl2an | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 1 ,  𝑠 〉 )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 ,  𝑠 〉 ) ) ) | 
						
							| 219 | 30 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝐴 ) ‘ 〈 1 ,  𝑠 〉 )  =  ( 𝐾 ‘ 〈 1 ,  𝑠 〉 ) ) | 
						
							| 220 | 218 219 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 ,  𝑠 〉 ) )  =  ( 𝐾 ‘ 〈 1 ,  𝑠 〉 ) ) | 
						
							| 221 |  | df-ov | ⊢ ( 1 𝐴 𝑠 )  =  ( 𝐴 ‘ 〈 1 ,  𝑠 〉 ) | 
						
							| 222 | 221 | fveq2i | ⊢ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) )  =  ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 ,  𝑠 〉 ) ) | 
						
							| 223 |  | df-ov | ⊢ ( 1 𝐾 𝑠 )  =  ( 𝐾 ‘ 〈 1 ,  𝑠 〉 ) | 
						
							| 224 | 220 222 223 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 1 𝐴 𝑠 ) )  =  ( 1 𝐾 𝑠 ) ) | 
						
							| 225 | 128 | simprd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐾 𝑠 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 226 | 13 | simp2d | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝑀 )  =  𝐺 ) | 
						
							| 227 | 226 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹  ∘  𝑀 )  =  𝐺 ) | 
						
							| 228 | 227 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 1 )  =  ( 𝐺 ‘ 1 ) ) | 
						
							| 229 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 230 |  | fvco3 | ⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵  ∧  1  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) | 
						
							| 231 | 229 91 230 | sylancl | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( ( 𝐹  ∘  𝑀 ) ‘ 1 )  =  ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) | 
						
							| 232 | 228 231 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐺 ‘ 1 )  =  ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) | 
						
							| 233 | 224 225 232 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 𝐹 ‘ ( 1 𝐴 𝑠 ) )  =  ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) | 
						
							| 234 | 233 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) ) | 
						
							| 235 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) | 
						
							| 236 | 234 235 | eqtr4di | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) | 
						
							| 237 |  | fovcdm | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  1  ∈  ( 0 [,] 1 )  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐴 𝑠 )  ∈  𝐵 ) | 
						
							| 238 | 91 237 | mp3an2 | ⊢ ( ( 𝐴 : ( ( 0 [,] 1 )  ×  ( 0 [,] 1 ) ) ⟶ 𝐵  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐴 𝑠 )  ∈  𝐵 ) | 
						
							| 239 | 24 238 | sylan | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐴 𝑠 )  ∈  𝐵 ) | 
						
							| 240 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) ) | 
						
							| 241 |  | fveq2 | ⊢ ( 𝑥  =  ( 1 𝐴 𝑠 )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) | 
						
							| 242 | 239 240 54 241 | fmptco | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) ) | 
						
							| 243 |  | fcoconst | ⊢ ( ( 𝐹  Fn  𝐵  ∧  ( 𝑀 ‘ 1 )  ∈  𝐵 )  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) | 
						
							| 244 | 155 212 243 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) | 
						
							| 245 | 236 242 244 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) )  =  ( 𝐹  ∘  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) ) ) | 
						
							| 246 |  | oveq1 | ⊢ ( 𝑠  =  1  →  ( 𝑠 𝐴 0 )  =  ( 1 𝐴 0 ) ) | 
						
							| 247 |  | fveq2 | ⊢ ( 𝑠  =  1  →  ( 𝑀 ‘ 𝑠 )  =  ( 𝑀 ‘ 1 ) ) | 
						
							| 248 | 246 247 | eqeq12d | ⊢ ( 𝑠  =  1  →  ( ( 𝑠 𝐴 0 )  =  ( 𝑀 ‘ 𝑠 )  ↔  ( 1 𝐴 0 )  =  ( 𝑀 ‘ 1 ) ) ) | 
						
							| 249 | 248 | rspcv | ⊢ ( 1  ∈  ( 0 [,] 1 )  →  ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 𝑠 𝐴 0 )  =  ( 𝑀 ‘ 𝑠 )  →  ( 1 𝐴 0 )  =  ( 𝑀 ‘ 1 ) ) ) | 
						
							| 250 | 91 89 249 | mpsyl | ⊢ ( 𝜑  →  ( 1 𝐴 0 )  =  ( 𝑀 ‘ 1 ) ) | 
						
							| 251 |  | oveq2 | ⊢ ( 𝑠  =  0  →  ( 1 𝐴 𝑠 )  =  ( 1 𝐴 0 ) ) | 
						
							| 252 |  | eqid | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) | 
						
							| 253 |  | ovex | ⊢ ( 1 𝐴 0 )  ∈  V | 
						
							| 254 | 251 252 253 | fvmpt | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) ‘ 0 )  =  ( 1 𝐴 0 ) ) | 
						
							| 255 | 25 254 | ax-mp | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) ‘ 0 )  =  ( 1 𝐴 0 ) | 
						
							| 256 |  | fvex | ⊢ ( 𝑀 ‘ 1 )  ∈  V | 
						
							| 257 | 256 | fvconst2 | ⊢ ( 0  ∈  ( 0 [,] 1 )  →  ( ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) ‘ 0 )  =  ( 𝑀 ‘ 1 ) ) | 
						
							| 258 | 25 257 | ax-mp | ⊢ ( ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) ‘ 0 )  =  ( 𝑀 ‘ 1 ) | 
						
							| 259 | 250 255 258 | 3eqtr4g | ⊢ ( 𝜑  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) ) ‘ 0 )  =  ( ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) ) | 
						
							| 260 | 1 21 4 116 118 62 210 214 245 259 | cvmliftmoi | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  =  ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } ) ) | 
						
							| 261 |  | fconstmpt | ⊢ ( ( 0 [,] 1 )  ×  { ( 𝑀 ‘ 1 ) } )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 1 ) ) | 
						
							| 262 | 260 261 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 1 ) ) ) | 
						
							| 263 |  | mpteqb | ⊢ ( ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 1 𝐴 𝑠 )  ∈  V  →  ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 1 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 1 𝐴 𝑠 )  =  ( 𝑀 ‘ 1 ) ) ) | 
						
							| 264 |  | ovexd | ⊢ ( 𝑠  ∈  ( 0 [,] 1 )  →  ( 1 𝐴 𝑠 )  ∈  V ) | 
						
							| 265 | 263 264 | mprg | ⊢ ( ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 1 𝐴 𝑠 ) )  =  ( 𝑠  ∈  ( 0 [,] 1 )  ↦  ( 𝑀 ‘ 1 ) )  ↔  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 1 𝐴 𝑠 )  =  ( 𝑀 ‘ 1 ) ) | 
						
							| 266 | 262 265 | sylib | ⊢ ( 𝜑  →  ∀ 𝑠  ∈  ( 0 [,] 1 ) ( 1 𝐴 𝑠 )  =  ( 𝑀 ‘ 1 ) ) | 
						
							| 267 | 266 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑠  ∈  ( 0 [,] 1 ) )  →  ( 1 𝐴 𝑠 )  =  ( 𝑀 ‘ 1 ) ) | 
						
							| 268 | 14 19 10 90 208 209 267 | isphtpy2d | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ) |