Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftpht.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmliftpht.m |
⊢ 𝑀 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
3 |
|
cvmliftpht.n |
⊢ 𝑁 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
4 |
|
cvmliftpht.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftpht.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
cvmliftpht.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
7 |
|
cvmliftphtlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
8 |
|
cvmliftphtlem.h |
⊢ ( 𝜑 → 𝐻 ∈ ( II Cn 𝐽 ) ) |
9 |
|
cvmliftphtlem.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ) |
10 |
|
cvmliftphtlem.a |
⊢ ( 𝜑 → 𝐴 ∈ ( ( II ×t II ) Cn 𝐶 ) ) |
11 |
|
cvmliftphtlem.c |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐴 ) = 𝐾 ) |
12 |
|
cvmliftphtlem.0 |
⊢ ( 𝜑 → ( 0 𝐴 0 ) = 𝑃 ) |
13 |
1 2 4 7 5 6
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑀 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑀 ) = 𝐺 ∧ ( 𝑀 ‘ 0 ) = 𝑃 ) ) |
14 |
13
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ( II Cn 𝐶 ) ) |
15 |
7 8 9
|
phtpy01 |
⊢ ( 𝜑 → ( ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ∧ ( 𝐺 ‘ 1 ) = ( 𝐻 ‘ 1 ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
17 |
6 16
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐻 ‘ 0 ) ) |
18 |
1 3 4 8 5 17
|
cvmliftiota |
⊢ ( 𝜑 → ( 𝑁 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝑁 ) = 𝐻 ∧ ( 𝑁 ‘ 0 ) = 𝑃 ) ) |
19 |
18
|
simp1d |
⊢ ( 𝜑 → 𝑁 ∈ ( II Cn 𝐶 ) ) |
20 |
|
iitop |
⊢ II ∈ Top |
21 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
22 |
20 20 21 21
|
txunii |
⊢ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) = ∪ ( II ×t II ) |
23 |
22 1
|
cnf |
⊢ ( 𝐴 ∈ ( ( II ×t II ) Cn 𝐶 ) → 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
24 |
10 23
|
syl |
⊢ ( 𝜑 → 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ) |
25 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
26 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → 〈 𝑠 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
27 |
25 26
|
mpan2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 𝑠 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
28 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 𝑠 , 0 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) ) |
29 |
24 27 28
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) ) |
30 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ∘ 𝐴 ) = 𝐾 ) |
31 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 0 〉 ) = ( 𝐾 ‘ 〈 𝑠 , 0 〉 ) ) |
32 |
29 31
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) = ( 𝐾 ‘ 〈 𝑠 , 0 〉 ) ) |
33 |
|
df-ov |
⊢ ( 𝑠 𝐴 0 ) = ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) |
34 |
33
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 0 〉 ) ) |
35 |
|
df-ov |
⊢ ( 𝑠 𝐾 0 ) = ( 𝐾 ‘ 〈 𝑠 , 0 〉 ) |
36 |
32 34 35
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) = ( 𝑠 𝐾 0 ) ) |
37 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
38 |
37
|
a1i |
⊢ ( 𝜑 → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
39 |
7 8
|
phtpyhtpy |
⊢ ( 𝜑 → ( 𝐺 ( PHtpy ‘ 𝐽 ) 𝐻 ) ⊆ ( 𝐺 ( II Htpy 𝐽 ) 𝐻 ) ) |
40 |
39 9
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 ( II Htpy 𝐽 ) 𝐻 ) ) |
41 |
38 7 8 40
|
htpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝑠 𝐾 0 ) = ( 𝐺 ‘ 𝑠 ) ∧ ( 𝑠 𝐾 1 ) = ( 𝐻 ‘ 𝑠 ) ) ) |
42 |
41
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐾 0 ) = ( 𝐺 ‘ 𝑠 ) ) |
43 |
36 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) = ( 𝐺 ‘ 𝑠 ) ) |
44 |
43
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
45 |
|
fovrn |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) ∈ 𝐵 ) |
46 |
25 45
|
mp3an3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) ∈ 𝐵 ) |
47 |
24 46
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) ∈ 𝐵 ) |
48 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) |
49 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
50 |
4 49
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
51 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
52 |
1 51
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
53 |
50 52
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ∪ 𝐽 ) |
54 |
53
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
55 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑠 𝐴 0 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) |
56 |
47 48 54 55
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 0 ) ) ) ) |
57 |
21 51
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
58 |
7 57
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
59 |
58
|
feqmptd |
⊢ ( 𝜑 → 𝐺 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑠 ) ) ) |
60 |
44 56 59
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ) |
61 |
38
|
cnmptid |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ 𝑠 ) ∈ ( II Cn II ) ) |
62 |
25
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
63 |
38 38 62
|
cnmptc |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ 0 ) ∈ ( II Cn II ) ) |
64 |
38 61 63 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ∈ ( II Cn 𝐶 ) ) |
65 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) ) → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
66 |
4 7 5 6 65
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
67 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) ) |
68 |
67
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ↔ ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ) ) |
69 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ‘ 0 ) ) |
70 |
|
oveq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 𝐴 0 ) = ( 0 𝐴 0 ) ) |
71 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) |
72 |
|
ovex |
⊢ ( 0 𝐴 0 ) ∈ V |
73 |
70 71 72
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ‘ 0 ) = ( 0 𝐴 0 ) ) |
74 |
25 73
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ‘ 0 ) = ( 0 𝐴 0 ) |
75 |
69 74
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( 𝑓 ‘ 0 ) = ( 0 𝐴 0 ) ) |
76 |
75
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 0 𝐴 0 ) = 𝑃 ) ) |
77 |
68 76
|
anbi12d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ∧ ( 0 𝐴 0 ) = 𝑃 ) ) ) |
78 |
77
|
riota2 |
⊢ ( ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ∈ ( II Cn 𝐶 ) ∧ ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ∧ ( 0 𝐴 0 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) ) |
79 |
64 66 78
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) = 𝐺 ∧ ( 0 𝐴 0 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) ) |
80 |
60 12 79
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) |
81 |
2 80
|
syl5eq |
⊢ ( 𝜑 → 𝑀 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) ) |
82 |
21 1
|
cnf |
⊢ ( 𝑀 ∈ ( II Cn 𝐶 ) → 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
83 |
14 82
|
syl |
⊢ ( 𝜑 → 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
84 |
83
|
feqmptd |
⊢ ( 𝜑 → 𝑀 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ) |
85 |
81 84
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ) |
86 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) ) |
87 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 𝑠 𝐴 0 ) ∈ V ) |
88 |
86 87
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 0 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) |
89 |
85 88
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) |
90 |
89
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ) |
91 |
|
1elunit |
⊢ 1 ∈ ( 0 [,] 1 ) |
92 |
|
opelxpi |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → 〈 𝑠 , 1 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
93 |
91 92
|
mpan2 |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 𝑠 , 1 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
94 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 𝑠 , 1 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) ) |
95 |
24 93 94
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) ) |
96 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 𝑠 , 1 〉 ) = ( 𝐾 ‘ 〈 𝑠 , 1 〉 ) ) |
97 |
95 96
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) = ( 𝐾 ‘ 〈 𝑠 , 1 〉 ) ) |
98 |
|
df-ov |
⊢ ( 𝑠 𝐴 1 ) = ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) |
99 |
98
|
fveq2i |
⊢ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 𝑠 , 1 〉 ) ) |
100 |
|
df-ov |
⊢ ( 𝑠 𝐾 1 ) = ( 𝐾 ‘ 〈 𝑠 , 1 〉 ) |
101 |
97 99 100
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) = ( 𝑠 𝐾 1 ) ) |
102 |
41
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐾 1 ) = ( 𝐻 ‘ 𝑠 ) ) |
103 |
101 102
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) = ( 𝐻 ‘ 𝑠 ) ) |
104 |
103
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
105 |
|
fovrn |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) ∈ 𝐵 ) |
106 |
91 105
|
mp3an3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) ∈ 𝐵 ) |
107 |
24 106
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) ∈ 𝐵 ) |
108 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) |
109 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑠 𝐴 1 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) |
110 |
107 108 54 109
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑠 𝐴 1 ) ) ) ) |
111 |
21 51
|
cnf |
⊢ ( 𝐻 ∈ ( II Cn 𝐽 ) → 𝐻 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
112 |
8 111
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 0 [,] 1 ) ⟶ ∪ 𝐽 ) |
113 |
112
|
feqmptd |
⊢ ( 𝜑 → 𝐻 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐻 ‘ 𝑠 ) ) ) |
114 |
104 110 113
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ) |
115 |
|
iiconn |
⊢ II ∈ Conn |
116 |
115
|
a1i |
⊢ ( 𝜑 → II ∈ Conn ) |
117 |
|
iinllyconn |
⊢ II ∈ 𝑛-Locally Conn |
118 |
117
|
a1i |
⊢ ( 𝜑 → II ∈ 𝑛-Locally Conn ) |
119 |
38 63 61 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ∈ ( II Cn 𝐶 ) ) |
120 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
121 |
4 120
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ Top ) |
122 |
1
|
toptopon |
⊢ ( 𝐶 ∈ Top ↔ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
123 |
121 122
|
sylib |
⊢ ( 𝜑 → 𝐶 ∈ ( TopOn ‘ 𝐵 ) ) |
124 |
|
ffvelrn |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 0 ∈ ( 0 [,] 1 ) ) → ( 𝑀 ‘ 0 ) ∈ 𝐵 ) |
125 |
83 25 124
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ‘ 0 ) ∈ 𝐵 ) |
126 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ( 𝑀 ‘ 0 ) ∈ 𝐵 ) → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ∈ ( II Cn 𝐶 ) ) |
127 |
38 123 125 126
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ∈ ( II Cn 𝐶 ) ) |
128 |
7 8 9
|
phtpyi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 0 𝐾 𝑠 ) = ( 𝐺 ‘ 0 ) ∧ ( 1 𝐾 𝑠 ) = ( 𝐺 ‘ 1 ) ) ) |
129 |
128
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐾 𝑠 ) = ( 𝐺 ‘ 0 ) ) |
130 |
|
opelxpi |
⊢ ( ( 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
131 |
25 130
|
mpan |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
132 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 0 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) ) |
133 |
24 131 132
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) ) |
134 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 0 , 𝑠 〉 ) = ( 𝐾 ‘ 〈 0 , 𝑠 〉 ) ) |
135 |
133 134
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) = ( 𝐾 ‘ 〈 0 , 𝑠 〉 ) ) |
136 |
|
df-ov |
⊢ ( 0 𝐴 𝑠 ) = ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) |
137 |
136
|
fveq2i |
⊢ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 0 , 𝑠 〉 ) ) |
138 |
|
df-ov |
⊢ ( 0 𝐾 𝑠 ) = ( 𝐾 ‘ 〈 0 , 𝑠 〉 ) |
139 |
135 137 138
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) = ( 0 𝐾 𝑠 ) ) |
140 |
13
|
simp3d |
⊢ ( 𝜑 → ( 𝑀 ‘ 0 ) = 𝑃 ) |
141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑀 ‘ 0 ) = 𝑃 ) |
142 |
141
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) = ( 𝐹 ‘ 𝑃 ) ) |
143 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
144 |
142 143
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) = ( 𝐺 ‘ 0 ) ) |
145 |
129 139 144
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) |
146 |
145
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) ) |
147 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) ) |
148 |
146 147
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) |
149 |
|
fovrn |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 0 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) ∈ 𝐵 ) |
150 |
25 149
|
mp3an2 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) ∈ 𝐵 ) |
151 |
24 150
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) ∈ 𝐵 ) |
152 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ) |
153 |
|
fveq2 |
⊢ ( 𝑥 = ( 0 𝐴 𝑠 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) |
154 |
151 152 54 153
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 0 𝐴 𝑠 ) ) ) ) |
155 |
53
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
156 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝐵 ∧ ( 𝑀 ‘ 0 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) |
157 |
155 125 156
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 0 ) ) } ) ) |
158 |
148 154 157
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ) = ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) ) |
159 |
12 140
|
eqtr4d |
⊢ ( 𝜑 → ( 0 𝐴 0 ) = ( 𝑀 ‘ 0 ) ) |
160 |
|
oveq2 |
⊢ ( 𝑠 = 0 → ( 0 𝐴 𝑠 ) = ( 0 𝐴 0 ) ) |
161 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) |
162 |
160 161 72
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ‘ 0 ) = ( 0 𝐴 0 ) ) |
163 |
25 162
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ‘ 0 ) = ( 0 𝐴 0 ) |
164 |
|
fvex |
⊢ ( 𝑀 ‘ 0 ) ∈ V |
165 |
164
|
fvconst2 |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) = ( 𝑀 ‘ 0 ) ) |
166 |
25 165
|
ax-mp |
⊢ ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) = ( 𝑀 ‘ 0 ) |
167 |
159 163 166
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) ‘ 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ‘ 0 ) ) |
168 |
1 21 4 116 118 62 119 127 158 167
|
cvmliftmoi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) ) |
169 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 0 ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) |
170 |
168 169
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) ) |
171 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) ) |
172 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 0 𝐴 𝑠 ) ∈ V ) |
173 |
171 172
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 0 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 0 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) |
174 |
170 173
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) |
175 |
|
oveq2 |
⊢ ( 𝑠 = 1 → ( 0 𝐴 𝑠 ) = ( 0 𝐴 1 ) ) |
176 |
175
|
eqeq1d |
⊢ ( 𝑠 = 1 → ( ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ↔ ( 0 𝐴 1 ) = ( 𝑀 ‘ 0 ) ) ) |
177 |
176
|
rspcv |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) → ( 0 𝐴 1 ) = ( 𝑀 ‘ 0 ) ) ) |
178 |
91 174 177
|
mpsyl |
⊢ ( 𝜑 → ( 0 𝐴 1 ) = ( 𝑀 ‘ 0 ) ) |
179 |
178 140
|
eqtrd |
⊢ ( 𝜑 → ( 0 𝐴 1 ) = 𝑃 ) |
180 |
91
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( 0 [,] 1 ) ) |
181 |
38 38 180
|
cnmptc |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ 1 ) ∈ ( II Cn II ) ) |
182 |
38 61 181 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ∈ ( II Cn 𝐶 ) ) |
183 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐻 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐻 ‘ 0 ) ) ) → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
184 |
4 8 5 17 183
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
185 |
|
coeq2 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) ) |
186 |
185
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ↔ ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ) ) |
187 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( 𝑓 ‘ 0 ) = ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ‘ 0 ) ) |
188 |
|
oveq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 𝐴 1 ) = ( 0 𝐴 1 ) ) |
189 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) |
190 |
|
ovex |
⊢ ( 0 𝐴 1 ) ∈ V |
191 |
188 189 190
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ‘ 0 ) = ( 0 𝐴 1 ) ) |
192 |
25 191
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ‘ 0 ) = ( 0 𝐴 1 ) |
193 |
187 192
|
eqtrdi |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( 𝑓 ‘ 0 ) = ( 0 𝐴 1 ) ) |
194 |
193
|
eqeq1d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 0 𝐴 1 ) = 𝑃 ) ) |
195 |
186 194
|
anbi12d |
⊢ ( 𝑓 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ∧ ( 0 𝐴 1 ) = 𝑃 ) ) ) |
196 |
195
|
riota2 |
⊢ ( ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ∈ ( II Cn 𝐶 ) ∧ ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ∧ ( 0 𝐴 1 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) ) |
197 |
182 184 196
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) = 𝐻 ∧ ( 0 𝐴 1 ) = 𝑃 ) ↔ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) ) |
198 |
114 179 197
|
mpbi2and |
⊢ ( 𝜑 → ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐻 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) |
199 |
3 198
|
syl5eq |
⊢ ( 𝜑 → 𝑁 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) ) |
200 |
21 1
|
cnf |
⊢ ( 𝑁 ∈ ( II Cn 𝐶 ) → 𝑁 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
201 |
19 200
|
syl |
⊢ ( 𝜑 → 𝑁 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
202 |
201
|
feqmptd |
⊢ ( 𝜑 → 𝑁 = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ) |
203 |
199 202
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ) |
204 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) ) |
205 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 𝑠 𝐴 1 ) ∈ V ) |
206 |
204 205
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑠 𝐴 1 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑁 ‘ 𝑠 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) |
207 |
203 206
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) |
208 |
207
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝑠 𝐴 1 ) = ( 𝑁 ‘ 𝑠 ) ) |
209 |
174
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 0 𝐴 𝑠 ) = ( 𝑀 ‘ 0 ) ) |
210 |
38 181 61 10
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ∈ ( II Cn 𝐶 ) ) |
211 |
|
ffvelrn |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( 𝑀 ‘ 1 ) ∈ 𝐵 ) |
212 |
83 91 211
|
sylancl |
⊢ ( 𝜑 → ( 𝑀 ‘ 1 ) ∈ 𝐵 ) |
213 |
|
cnconst2 |
⊢ ( ( II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ∧ 𝐶 ∈ ( TopOn ‘ 𝐵 ) ∧ ( 𝑀 ‘ 1 ) ∈ 𝐵 ) → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ∈ ( II Cn 𝐶 ) ) |
214 |
38 123 212 213
|
syl3anc |
⊢ ( 𝜑 → ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ∈ ( II Cn 𝐶 ) ) |
215 |
|
opelxpi |
⊢ ( ( 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
216 |
91 215
|
mpan |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) |
217 |
|
fvco3 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 〈 1 , 𝑠 〉 ∈ ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) ) |
218 |
24 216 217
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) ) |
219 |
30
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝐴 ) ‘ 〈 1 , 𝑠 〉 ) = ( 𝐾 ‘ 〈 1 , 𝑠 〉 ) ) |
220 |
218 219
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) = ( 𝐾 ‘ 〈 1 , 𝑠 〉 ) ) |
221 |
|
df-ov |
⊢ ( 1 𝐴 𝑠 ) = ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) |
222 |
221
|
fveq2i |
⊢ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝐴 ‘ 〈 1 , 𝑠 〉 ) ) |
223 |
|
df-ov |
⊢ ( 1 𝐾 𝑠 ) = ( 𝐾 ‘ 〈 1 , 𝑠 〉 ) |
224 |
220 222 223
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) = ( 1 𝐾 𝑠 ) ) |
225 |
128
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐾 𝑠 ) = ( 𝐺 ‘ 1 ) ) |
226 |
13
|
simp2d |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑀 ) = 𝐺 ) |
227 |
226
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ∘ 𝑀 ) = 𝐺 ) |
228 |
227
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑀 ) ‘ 1 ) = ( 𝐺 ‘ 1 ) ) |
229 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
230 |
|
fvco3 |
⊢ ( ( 𝑀 : ( 0 [,] 1 ) ⟶ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑀 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
231 |
229 91 230
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ∘ 𝑀 ) ‘ 1 ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
232 |
228 231
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ 1 ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
233 |
224 225 232
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) = ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
234 |
233
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) ) |
235 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) ) |
236 |
234 235
|
eqtr4di |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) |
237 |
|
fovrn |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 1 ∈ ( 0 [,] 1 ) ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) ∈ 𝐵 ) |
238 |
91 237
|
mp3an2 |
⊢ ( ( 𝐴 : ( ( 0 [,] 1 ) × ( 0 [,] 1 ) ) ⟶ 𝐵 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) ∈ 𝐵 ) |
239 |
24 238
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) ∈ 𝐵 ) |
240 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ) |
241 |
|
fveq2 |
⊢ ( 𝑥 = ( 1 𝐴 𝑠 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) |
242 |
239 240 54 241
|
fmptco |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝐹 ‘ ( 1 𝐴 𝑠 ) ) ) ) |
243 |
|
fcoconst |
⊢ ( ( 𝐹 Fn 𝐵 ∧ ( 𝑀 ‘ 1 ) ∈ 𝐵 ) → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) |
244 |
155 212 243
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) = ( ( 0 [,] 1 ) × { ( 𝐹 ‘ ( 𝑀 ‘ 1 ) ) } ) ) |
245 |
236 242 244
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ∘ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ) = ( 𝐹 ∘ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) ) |
246 |
|
oveq1 |
⊢ ( 𝑠 = 1 → ( 𝑠 𝐴 0 ) = ( 1 𝐴 0 ) ) |
247 |
|
fveq2 |
⊢ ( 𝑠 = 1 → ( 𝑀 ‘ 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
248 |
246 247
|
eqeq12d |
⊢ ( 𝑠 = 1 → ( ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) ↔ ( 1 𝐴 0 ) = ( 𝑀 ‘ 1 ) ) ) |
249 |
248
|
rspcv |
⊢ ( 1 ∈ ( 0 [,] 1 ) → ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 𝑠 𝐴 0 ) = ( 𝑀 ‘ 𝑠 ) → ( 1 𝐴 0 ) = ( 𝑀 ‘ 1 ) ) ) |
250 |
91 89 249
|
mpsyl |
⊢ ( 𝜑 → ( 1 𝐴 0 ) = ( 𝑀 ‘ 1 ) ) |
251 |
|
oveq2 |
⊢ ( 𝑠 = 0 → ( 1 𝐴 𝑠 ) = ( 1 𝐴 0 ) ) |
252 |
|
eqid |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) |
253 |
|
ovex |
⊢ ( 1 𝐴 0 ) ∈ V |
254 |
251 252 253
|
fvmpt |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ‘ 0 ) = ( 1 𝐴 0 ) ) |
255 |
25 254
|
ax-mp |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ‘ 0 ) = ( 1 𝐴 0 ) |
256 |
|
fvex |
⊢ ( 𝑀 ‘ 1 ) ∈ V |
257 |
256
|
fvconst2 |
⊢ ( 0 ∈ ( 0 [,] 1 ) → ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) = ( 𝑀 ‘ 1 ) ) |
258 |
25 257
|
ax-mp |
⊢ ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) = ( 𝑀 ‘ 1 ) |
259 |
250 255 258
|
3eqtr4g |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) ‘ 0 ) = ( ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ‘ 0 ) ) |
260 |
1 21 4 116 118 62 210 214 245 259
|
cvmliftmoi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) ) |
261 |
|
fconstmpt |
⊢ ( ( 0 [,] 1 ) × { ( 𝑀 ‘ 1 ) } ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) |
262 |
260 261
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) ) |
263 |
|
mpteqb |
⊢ ( ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) ∈ V → ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) ) |
264 |
|
ovexd |
⊢ ( 𝑠 ∈ ( 0 [,] 1 ) → ( 1 𝐴 𝑠 ) ∈ V ) |
265 |
263 264
|
mprg |
⊢ ( ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 1 𝐴 𝑠 ) ) = ( 𝑠 ∈ ( 0 [,] 1 ) ↦ ( 𝑀 ‘ 1 ) ) ↔ ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
266 |
262 265
|
sylib |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ( 0 [,] 1 ) ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
267 |
266
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 0 [,] 1 ) ) → ( 1 𝐴 𝑠 ) = ( 𝑀 ‘ 1 ) ) |
268 |
14 19 10 90 208 209 267
|
isphtpy2d |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑀 ( PHtpy ‘ 𝐶 ) 𝑁 ) ) |