Metamath Proof Explorer


Theorem cvmlift3lem4

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B = C
cvmlift3.y Y = K
cvmlift3.f φ F C CovMap J
cvmlift3.k φ K SConn
cvmlift3.l φ K N-Locally PConn
cvmlift3.o φ O Y
cvmlift3.g φ G K Cn J
cvmlift3.p φ P B
cvmlift3.e φ F P = G O
cvmlift3.h H = x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
Assertion cvmlift3lem4 φ X Y H X = A f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A

Proof

Step Hyp Ref Expression
1 cvmlift3.b B = C
2 cvmlift3.y Y = K
3 cvmlift3.f φ F C CovMap J
4 cvmlift3.k φ K SConn
5 cvmlift3.l φ K N-Locally PConn
6 cvmlift3.o φ O Y
7 cvmlift3.g φ G K Cn J
8 cvmlift3.p φ P B
9 cvmlift3.e φ F P = G O
10 cvmlift3.h H = x Y ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z
11 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φ H : Y B
12 11 ffvelrnda φ X Y H X B
13 eleq1 H X = A H X B A B
14 12 13 syl5ibcom φ X Y H X = A A B
15 eqid ι g II Cn C | F g = G f g 0 = P = ι g II Cn C | F g = G f g 0 = P
16 3 ad2antrr φ X Y f II Cn K f 0 = O F C CovMap J
17 simprl φ X Y f II Cn K f 0 = O f II Cn K
18 7 ad2antrr φ X Y f II Cn K f 0 = O G K Cn J
19 cnco f II Cn K G K Cn J G f II Cn J
20 17 18 19 syl2anc φ X Y f II Cn K f 0 = O G f II Cn J
21 8 ad2antrr φ X Y f II Cn K f 0 = O P B
22 simprr φ X Y f II Cn K f 0 = O f 0 = O
23 22 fveq2d φ X Y f II Cn K f 0 = O G f 0 = G O
24 iiuni 0 1 = II
25 24 2 cnf f II Cn K f : 0 1 Y
26 17 25 syl φ X Y f II Cn K f 0 = O f : 0 1 Y
27 0elunit 0 0 1
28 fvco3 f : 0 1 Y 0 0 1 G f 0 = G f 0
29 26 27 28 sylancl φ X Y f II Cn K f 0 = O G f 0 = G f 0
30 9 ad2antrr φ X Y f II Cn K f 0 = O F P = G O
31 23 29 30 3eqtr4rd φ X Y f II Cn K f 0 = O F P = G f 0
32 1 15 16 20 21 31 cvmliftiota φ X Y f II Cn K f 0 = O ι g II Cn C | F g = G f g 0 = P II Cn C F ι g II Cn C | F g = G f g 0 = P = G f ι g II Cn C | F g = G f g 0 = P 0 = P
33 32 simp1d φ X Y f II Cn K f 0 = O ι g II Cn C | F g = G f g 0 = P II Cn C
34 24 1 cnf ι g II Cn C | F g = G f g 0 = P II Cn C ι g II Cn C | F g = G f g 0 = P : 0 1 B
35 33 34 syl φ X Y f II Cn K f 0 = O ι g II Cn C | F g = G f g 0 = P : 0 1 B
36 1elunit 1 0 1
37 ffvelrn ι g II Cn C | F g = G f g 0 = P : 0 1 B 1 0 1 ι g II Cn C | F g = G f g 0 = P 1 B
38 35 36 37 sylancl φ X Y f II Cn K f 0 = O ι g II Cn C | F g = G f g 0 = P 1 B
39 eleq1 ι g II Cn C | F g = G f g 0 = P 1 = A ι g II Cn C | F g = G f g 0 = P 1 B A B
40 38 39 syl5ibcom φ X Y f II Cn K f 0 = O ι g II Cn C | F g = G f g 0 = P 1 = A A B
41 40 expr φ X Y f II Cn K f 0 = O ι g II Cn C | F g = G f g 0 = P 1 = A A B
42 41 a1dd φ X Y f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A A B
43 42 3impd φ X Y f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A A B
44 43 rexlimdva φ X Y f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A A B
45 eqeq2 x = X f 1 = x f 1 = X
46 45 3anbi2d x = X f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
47 46 rexbidv x = X f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
48 47 riotabidv x = X ι z B | f II Cn K f 0 = O f 1 = x ι g II Cn C | F g = G f g 0 = P 1 = z = ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
49 riotaex ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z V
50 48 10 49 fvmpt X Y H X = ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
51 50 adantl φ X Y H X = ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
52 51 eqeq1d φ X Y H X = A ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z = A
53 52 adantl A B φ X Y H X = A ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z = A
54 1 2 3 4 5 6 7 8 9 cvmlift3lem2 φ X Y ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z
55 eqeq2 z = A ι g II Cn C | F g = G f g 0 = P 1 = z ι g II Cn C | F g = G f g 0 = P 1 = A
56 55 3anbi3d z = A f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A
57 56 rexbidv z = A f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A
58 57 riota2 A B ∃! z B f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z = A
59 54 58 sylan2 A B φ X Y f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A ι z B | f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = z = A
60 53 59 bitr4d A B φ X Y H X = A f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A
61 60 expcom φ X Y A B H X = A f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A
62 14 44 61 pm5.21ndd φ X Y H X = A f II Cn K f 0 = O f 1 = X ι g II Cn C | F g = G f g 0 = P 1 = A