| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift3.b |  |-  B = U. C | 
						
							| 2 |  | cvmlift3.y |  |-  Y = U. K | 
						
							| 3 |  | cvmlift3.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmlift3.k |  |-  ( ph -> K e. SConn ) | 
						
							| 5 |  | cvmlift3.l |  |-  ( ph -> K e. N-Locally PConn ) | 
						
							| 6 |  | cvmlift3.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmlift3.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmlift3.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmlift3.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 |  | cvmlift3.h |  |-  H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | cvmlift3lem3 |  |-  ( ph -> H : Y --> B ) | 
						
							| 12 | 11 | ffvelcdmda |  |-  ( ( ph /\ X e. Y ) -> ( H ` X ) e. B ) | 
						
							| 13 |  | eleq1 |  |-  ( ( H ` X ) = A -> ( ( H ` X ) e. B <-> A e. B ) ) | 
						
							| 14 | 12 13 | syl5ibcom |  |-  ( ( ph /\ X e. Y ) -> ( ( H ` X ) = A -> A e. B ) ) | 
						
							| 15 |  | eqid |  |-  ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) | 
						
							| 16 | 3 | ad2antrr |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> F e. ( C CovMap J ) ) | 
						
							| 17 |  | simprl |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> f e. ( II Cn K ) ) | 
						
							| 18 | 7 | ad2antrr |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> G e. ( K Cn J ) ) | 
						
							| 19 |  | cnco |  |-  ( ( f e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. f ) e. ( II Cn J ) ) | 
						
							| 20 | 17 18 19 | syl2anc |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( G o. f ) e. ( II Cn J ) ) | 
						
							| 21 | 8 | ad2antrr |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> P e. B ) | 
						
							| 22 |  | simprr |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( f ` 0 ) = O ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( G ` ( f ` 0 ) ) = ( G ` O ) ) | 
						
							| 24 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 25 | 24 2 | cnf |  |-  ( f e. ( II Cn K ) -> f : ( 0 [,] 1 ) --> Y ) | 
						
							| 26 | 17 25 | syl |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> f : ( 0 [,] 1 ) --> Y ) | 
						
							| 27 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 28 |  | fvco3 |  |-  ( ( f : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) | 
						
							| 29 | 26 27 28 | sylancl |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) | 
						
							| 30 | 9 | ad2antrr |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( F ` P ) = ( G ` O ) ) | 
						
							| 31 | 23 29 30 | 3eqtr4rd |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( F ` P ) = ( ( G o. f ) ` 0 ) ) | 
						
							| 32 | 1 15 16 20 21 31 | cvmliftiota |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) /\ ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) = ( G o. f ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 0 ) = P ) ) | 
						
							| 33 | 32 | simp1d |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) ) | 
						
							| 34 | 24 1 | cnf |  |-  ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 35 | 33 34 | syl |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) | 
						
							| 36 |  | 1elunit |  |-  1 e. ( 0 [,] 1 ) | 
						
							| 37 |  | ffvelcdm |  |-  ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B ) | 
						
							| 38 | 35 36 37 | sylancl |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B ) | 
						
							| 39 |  | eleq1 |  |-  ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B <-> A e. B ) ) | 
						
							| 40 | 38 39 | syl5ibcom |  |-  ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> A e. B ) ) | 
						
							| 41 | 40 | expr |  |-  ( ( ( ph /\ X e. Y ) /\ f e. ( II Cn K ) ) -> ( ( f ` 0 ) = O -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> A e. B ) ) ) | 
						
							| 42 | 41 | a1dd |  |-  ( ( ( ph /\ X e. Y ) /\ f e. ( II Cn K ) ) -> ( ( f ` 0 ) = O -> ( ( f ` 1 ) = X -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> A e. B ) ) ) ) | 
						
							| 43 | 42 | 3impd |  |-  ( ( ( ph /\ X e. Y ) /\ f e. ( II Cn K ) ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) -> A e. B ) ) | 
						
							| 44 | 43 | rexlimdva |  |-  ( ( ph /\ X e. Y ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) -> A e. B ) ) | 
						
							| 45 |  | eqeq2 |  |-  ( x = X -> ( ( f ` 1 ) = x <-> ( f ` 1 ) = X ) ) | 
						
							| 46 | 45 | 3anbi2d |  |-  ( x = X -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 47 | 46 | rexbidv |  |-  ( x = X -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 48 | 47 | riotabidv |  |-  ( x = X -> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 49 |  | riotaex |  |-  ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) e. _V | 
						
							| 50 | 48 10 49 | fvmpt |  |-  ( X e. Y -> ( H ` X ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ph /\ X e. Y ) -> ( H ` X ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) | 
						
							| 52 | 51 | eqeq1d |  |-  ( ( ph /\ X e. Y ) -> ( ( H ` X ) = A <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( A e. B /\ ( ph /\ X e. Y ) ) -> ( ( H ` X ) = A <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 | cvmlift3lem2 |  |-  ( ( ph /\ X e. Y ) -> E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) | 
						
							| 55 |  | eqeq2 |  |-  ( z = A -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) | 
						
							| 56 | 55 | 3anbi3d |  |-  ( z = A -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) | 
						
							| 57 | 56 | rexbidv |  |-  ( z = A -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) | 
						
							| 58 | 57 | riota2 |  |-  ( ( A e. B /\ E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) | 
						
							| 59 | 54 58 | sylan2 |  |-  ( ( A e. B /\ ( ph /\ X e. Y ) ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) | 
						
							| 60 | 53 59 | bitr4d |  |-  ( ( A e. B /\ ( ph /\ X e. Y ) ) -> ( ( H ` X ) = A <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) | 
						
							| 61 | 60 | expcom |  |-  ( ( ph /\ X e. Y ) -> ( A e. B -> ( ( H ` X ) = A <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) ) | 
						
							| 62 | 14 44 61 | pm5.21ndd |  |-  ( ( ph /\ X e. Y ) -> ( ( H ` X ) = A <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) |