Step |
Hyp |
Ref |
Expression |
1 |
|
cvmlift3.b |
|- B = U. C |
2 |
|
cvmlift3.y |
|- Y = U. K |
3 |
|
cvmlift3.f |
|- ( ph -> F e. ( C CovMap J ) ) |
4 |
|
cvmlift3.k |
|- ( ph -> K e. SConn ) |
5 |
|
cvmlift3.l |
|- ( ph -> K e. N-Locally PConn ) |
6 |
|
cvmlift3.o |
|- ( ph -> O e. Y ) |
7 |
|
cvmlift3.g |
|- ( ph -> G e. ( K Cn J ) ) |
8 |
|
cvmlift3.p |
|- ( ph -> P e. B ) |
9 |
|
cvmlift3.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
10 |
|
cvmlift3.h |
|- H = ( x e. Y |-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cvmlift3lem3 |
|- ( ph -> H : Y --> B ) |
12 |
11
|
ffvelrnda |
|- ( ( ph /\ X e. Y ) -> ( H ` X ) e. B ) |
13 |
|
eleq1 |
|- ( ( H ` X ) = A -> ( ( H ` X ) e. B <-> A e. B ) ) |
14 |
12 13
|
syl5ibcom |
|- ( ( ph /\ X e. Y ) -> ( ( H ` X ) = A -> A e. B ) ) |
15 |
|
eqid |
|- ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) = ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) |
16 |
3
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> F e. ( C CovMap J ) ) |
17 |
|
simprl |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> f e. ( II Cn K ) ) |
18 |
7
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> G e. ( K Cn J ) ) |
19 |
|
cnco |
|- ( ( f e. ( II Cn K ) /\ G e. ( K Cn J ) ) -> ( G o. f ) e. ( II Cn J ) ) |
20 |
17 18 19
|
syl2anc |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( G o. f ) e. ( II Cn J ) ) |
21 |
8
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> P e. B ) |
22 |
|
simprr |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( f ` 0 ) = O ) |
23 |
22
|
fveq2d |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( G ` ( f ` 0 ) ) = ( G ` O ) ) |
24 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
25 |
24 2
|
cnf |
|- ( f e. ( II Cn K ) -> f : ( 0 [,] 1 ) --> Y ) |
26 |
17 25
|
syl |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> f : ( 0 [,] 1 ) --> Y ) |
27 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
28 |
|
fvco3 |
|- ( ( f : ( 0 [,] 1 ) --> Y /\ 0 e. ( 0 [,] 1 ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) |
29 |
26 27 28
|
sylancl |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( G o. f ) ` 0 ) = ( G ` ( f ` 0 ) ) ) |
30 |
9
|
ad2antrr |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( F ` P ) = ( G ` O ) ) |
31 |
23 29 30
|
3eqtr4rd |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( F ` P ) = ( ( G o. f ) ` 0 ) ) |
32 |
1 15 16 20 21 31
|
cvmliftiota |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) /\ ( F o. ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ) = ( G o. f ) /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 0 ) = P ) ) |
33 |
32
|
simp1d |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) ) |
34 |
24 1
|
cnf |
|- ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) e. ( II Cn C ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) |
35 |
33 34
|
syl |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B ) |
36 |
|
1elunit |
|- 1 e. ( 0 [,] 1 ) |
37 |
|
ffvelrn |
|- ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) : ( 0 [,] 1 ) --> B /\ 1 e. ( 0 [,] 1 ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B ) |
38 |
35 36 37
|
sylancl |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B ) |
39 |
|
eleq1 |
|- ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) e. B <-> A e. B ) ) |
40 |
38 39
|
syl5ibcom |
|- ( ( ( ph /\ X e. Y ) /\ ( f e. ( II Cn K ) /\ ( f ` 0 ) = O ) ) -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> A e. B ) ) |
41 |
40
|
expr |
|- ( ( ( ph /\ X e. Y ) /\ f e. ( II Cn K ) ) -> ( ( f ` 0 ) = O -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> A e. B ) ) ) |
42 |
41
|
a1dd |
|- ( ( ( ph /\ X e. Y ) /\ f e. ( II Cn K ) ) -> ( ( f ` 0 ) = O -> ( ( f ` 1 ) = X -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A -> A e. B ) ) ) ) |
43 |
42
|
3impd |
|- ( ( ( ph /\ X e. Y ) /\ f e. ( II Cn K ) ) -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) -> A e. B ) ) |
44 |
43
|
rexlimdva |
|- ( ( ph /\ X e. Y ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) -> A e. B ) ) |
45 |
|
eqeq2 |
|- ( x = X -> ( ( f ` 1 ) = x <-> ( f ` 1 ) = X ) ) |
46 |
45
|
3anbi2d |
|- ( x = X -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
47 |
46
|
rexbidv |
|- ( x = X -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
48 |
47
|
riotabidv |
|- ( x = X -> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = x /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
49 |
|
riotaex |
|- ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) e. _V |
50 |
48 10 49
|
fvmpt |
|- ( X e. Y -> ( H ` X ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ X e. Y ) -> ( H ` X ) = ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) ) |
52 |
51
|
eqeq1d |
|- ( ( ph /\ X e. Y ) -> ( ( H ` X ) = A <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) |
53 |
52
|
adantl |
|- ( ( A e. B /\ ( ph /\ X e. Y ) ) -> ( ( H ` X ) = A <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) |
54 |
1 2 3 4 5 6 7 8 9
|
cvmlift3lem2 |
|- ( ( ph /\ X e. Y ) -> E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) |
55 |
|
eqeq2 |
|- ( z = A -> ( ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z <-> ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) |
56 |
55
|
3anbi3d |
|- ( z = A -> ( ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) |
57 |
56
|
rexbidv |
|- ( z = A -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) |
58 |
57
|
riota2 |
|- ( ( A e. B /\ E! z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) |
59 |
54 58
|
sylan2 |
|- ( ( A e. B /\ ( ph /\ X e. Y ) ) -> ( E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) <-> ( iota_ z e. B E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = z ) ) = A ) ) |
60 |
53 59
|
bitr4d |
|- ( ( A e. B /\ ( ph /\ X e. Y ) ) -> ( ( H ` X ) = A <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) |
61 |
60
|
expcom |
|- ( ( ph /\ X e. Y ) -> ( A e. B -> ( ( H ` X ) = A <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) ) |
62 |
14 44 61
|
pm5.21ndd |
|- ( ( ph /\ X e. Y ) -> ( ( H ` X ) = A <-> E. f e. ( II Cn K ) ( ( f ` 0 ) = O /\ ( f ` 1 ) = X /\ ( ( iota_ g e. ( II Cn C ) ( ( F o. g ) = ( G o. f ) /\ ( g ` 0 ) = P ) ) ` 1 ) = A ) ) ) |